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ABSTRACT: This study investigates the impact of Wire Electrical Discharge Machining (WEDM) parameters 

on Material Removal Rate (MRR), Surface Roughness (SR), and White Layer Thickness (WLT) in hardened tool 

steel, particularly focusing on enhanced XW42 steel variants. A two-level full factorial design (FFD) and Analysis 

of Variance (ANOVA) were used to examine the influence of pulse-on time (Ton), voltage (V), and wire tension 

(WT) on machining performance. Among the modified steels, enhanced XW42 (M3)— enhanced with cerium 

(Ce), lanthanum (La), and niobium (Nb)—exhibited superior machinability. Enhanced XW42 (M3) demonstrated 

the lowest WLT (144.32μm) and SR (1.92μm) under optimized conditions (Ton: 2μs, V: 6V, WT: 120N), along 

with a high MRR of 0.00811kg/s. SEM and EDS analyses confirmed the formation of a smooth recast layer with 

minimal defects such as cracks, voids, and residual debris, indicating stable machining. The presence of cerium 

and lanthanum contributed to grain refinement and enhanced thermal stability, while niobium improved hardness 

and resistance to white layer formation. Predictive modelling for enhanced XW42 (M3) further validated the 

machining response trends, confirming its suitability for precise process optimization. Regression models showed 

strong predictive accuracy with R² values exceeding 93% for SR and WLT, and low average errors (SR: 0.7%, 

WLT: 8.2%). Voltage was identified as the most significant factor affecting WLT (69.23%), whereas Ton had the 

highest influence on SR (64.45%). These findings underscore the importance of alloying elements and optimized 

WEDM parameters in achieving high-performance surface integrity and machining efficiency, particularly for 

applications in the tool and die industry. 
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1.0 INTRODUCTION 

Wire Electrical Discharge Machining (WEDM) has emerged as a pivotal technique for 

machining hard steel components, especially those with hardness exceeding 50 HRC (Ndaliman, 2022). 

Its precision and efficiency make it indispensable in the manufacturing of dies and molds (Rosli, 

Jamaludin, & Azuddin, 2018). To withstand the high thermal and mechanical stresses during machining, 

advanced tool steels like enhanced XW42 have been developed. XW42, known for its high wear 

resistance and moderate toughness, is widely utilized in applications such as blanking, cutting, and 

forming operations, particularly in medium to large production molds (Rosli et al., 2018). In WEDM, 

critical output responses include Surface Roughness (SR), White Layer Thickness (WLT), and Material 

Removal Rate (MRR). The white layer, formed due to rapid solidification, often contains micro-cracks 

that compromise fatigue strength and mechanical reliability (Kumar et al., 2022; Singh & Rao, 2023). 

Surfaces with thick or micro-cracked white layers are unsuitable for high- temperature or cyclic loading 

applications. Likewise, MRR reflects the efficiency of material removal and significantly impacts 

overall machining productivity. However, increasing MRR often comes at the expense of surface 

integrity and dimensional accuracy, highlighting the need for optimized parameter selection (Arif et al., 
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2022; Yadav et al., 2023). 

Surface integrity, particularly expressed through SR and WLT, directly influences functional 

performance, including fatigue life, corrosion resistance, creep durability, and tribological behavior. 

The formation of the white layer typically leads to deterioration in these properties, necessitating 

advanced alloy development and precise control of machining parameters to mitigate its presence 

(Kumar et al., 2022; Yadav et al., 2023). MRR, as a measure of productivity, must also be balanced 

with these integrity factors to achieve optimal performance in industrial applications. 

Much of the current literature on hard machining is centered on AISI D2, typically using 

conventional methods such as milling and turning. For instance, high-speed dry milling of AISI D2 

hardened to 52 HRC has been explored (Das & Sahoo, 2023), and neural networks have been employed 

to predict tool wear and SR during milling (Kumar & Verma, 2020). Other studies have evaluated force 

analysis and surface quality during the turning of EN X160CrMoV12, and investigations into coatings 

and tool performance during hard turning have also been carried out (Kumar & Verma, 2020). 

Longer pulse-off times and increased gap voltage have been demonstrated to reduce SR (Kumar 

et al., 2022), while shorter pulse-on durations can enhance MRR albeit with trade-offs in SR and WLT 

(Yadav et al., 2023). Optimization approaches such as grey relational analysis, response surface 

methodology (RSM), and machine learning models have been employed to balance multiple 

responses—MRR, SR, kerf width, and dimensional precision—on various materials including tool 

steels, aluminum matrix composites, and stainless steels (Arif et al., 2022; Zhang et al., 2024). 

While past studies have used methods like RSM and ANN to predict WEDM performance, 

these models often face challenges in capturing nonlinear interactions or require large datasets (Kumar 

& Verma, 2020; Das & Sahoo, 2023). Additionally, most prior research focuses on conventional steels, 

limiting their accuracy when applied to advanced materials like XW42. Therefore, a more reliable and 

adaptable predictive model is needed to accurately correlate machining parameters with SR, WLT, and 

MRR for enhanced tool steel applications. 

 

Therefore, this study aims to: 

 

1. Investigate the influence of WEDM parameters on SR, WLT, and MRR of enhanced XW42 

tool steel; and
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2. Develop predictive models to determine optimal machining conditions for improved 

productivity and surface integrity in precision die and mold applications. 

 

2.0 METHODOLOGY 

Both the original and enhanced cold work tool steels were machined to dimensions of 20mm 

× 10mm × 10mm for the experimental procedures. The dependent variables in this study are surface 

roughness (SR), material removal rate (MRR), and white layer thickness (WLT), while the independent 

variables are pulse-on time (Ton), gap voltage (V), and wire tension, as referenced by Yadav et al. (2023) 

and Zhang et al. (2024). The alloying elements added to the enhanced cold work tool steel were based 

on standardized composition ranges, as detailed in Table 1. 

 

Table 1: Alloy element added to the XW42 base compositions (g) 
 

Element C Si Mn P S Cr Mo Ni 

XW42 - - - - - - - - 

M1 5.8 - - - - 7.5 0.2 1.5 

M2 8.6 - - - - 18.4 2.5 1.6 
M3 12.7 - - - - 5.1 4.9 1.5 

Element Cu W V Nb Ce/La Co Ti Fe 

XW42 - - - - - - - - 

M1 - 1.3 0.2 - - - - - 

M2 - 2.1 1.9 1.3 0.2 - 0.1 - 
M3 - 2.9 5.4 5.2 0.6 - 0.3 - 

Standard base composition of Assab XW-42 (AISI D2) tool steel: 1.55 %C, 0.30 % 

Si, 0.40 % Mn, 11.3–12.0 % Cr, 0.80 % Mo, 0.90 % V. 

 

2.1 Machine used 

A numerically controlled WEDM machine, Sodick AG600L5s, was utilized in this study 

(Sodick, 2020). The machine is located at the Advanced Training Centre, Alor Gajah, Melaka. It 

operates by feeding the electrode wire at a constant speed while simultaneously supplying current 

through the wire (Zhang & Zhang, 2019). One of the advanced features of this model is its automatic 

adjustment of wire tension and speed, which helps prevent machine failure due to wire rupture (Tan, 

2021). A 0.20 mm diameter brass wire was employed as the electrode, and de-ionized water was used 

as the dielectric fluid, supplied from both the upper and lower nozzles (Kumar et al., 2020). 

A custom-designed fixture was employed to securely hold the prismatic workpiece during 

machining (Figure 1). Due to the small dimensions of the specimens (10mm × 10mm × 20mm), 

meticulous setup was necessary to ensure accurate vertical alignment within the fixture (Smith & Lee, 

2018). Machining conditions were selected based on the manufacturer’s specifications and operational 

recommendations (Sodick, 2020). The primary response variables considered in the experiment were 

Material Removal Rate (MRR), Surface Roughness (SR), and White Layer Thickness (WLT) (Yuan
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& Zhou, 2021). The machine settings for constant parameters used throughout the experiments are 

summarized in Table 2. 

 

Figure 1: A custom-designed fixture to securely hold the 

prismatic workpiece during machining 

 

Table 2: Constant machining parameters 
 

Machining parameters Value 

Pulse off time 7 ~ 50 

Spark gap set voltage 10V ~ 75V 

Flush pressure 0 ~ 7 psi 

Feed rate 0 ~ 50 mm/s 

Wire feed 5 – 340 mm/s 

Main power supply voltage 34V 
 

Sodick, 2020 

These parameters were kept constant throughout all trials, while selected process variables (Ton, 

V, and wire tension) were varied systematically to assess their impact on the defined response 

characteristics (MRR, SR, and WLT) (Tan & Zhang, 2019). 

 

2.2 Experimental design 

The objective of this research is to examine the performance of Wire Electrical Discharge 

Machining (WEDM) parameters, specifically focusing on Material Removal Rate (MRR), White Layer 

Thickness (WLT), and Surface Roughness (SR). To evaluate how various machining parameters 

influence these responses, a structured experimental procedure was conducted using a range of selected 

input values designed for this study. 

All experiments were performed using a Sodick AG600L WEDM machine (Sodick, 2020). 

Previous works by Gautier et al. (2015) have demonstrated the applicability of full factorial design 

(FFD) in WEDM investigations. The design of experiments followed a 2ᵏ full factorial design (FFD) 

without replication, where k = 3, resulting in 8 experimental runs plus 4 center points, totaling 12
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experimental runs per sample. The selected low, middle, and high levels of each input variable were 

derived from the machine manufacturer’s manual and are presented in Table 3. 

 

Table 3: Levels of responses chosen for experiment 
 

Pulse On Time Voltage Wire Tension 

(Ton; μs) (V; V) (WT; N) 

2 6 80 
6 8 100 
8 10 120 

Sodick, 2020 

 

All experiments were conducted based on a two-level factorial experimental design, and results 

were collected for the three machining responses: MRR, SR, and WLT. Data analysis, visualization, 

and model development were performed using Design Expert software (Stat-Ease, 2020). In general, 

lower surface roughness values are indicative of better surface finish and higher machining 

performance, while higher MRR and WLT values indicate higher productivity and potential surface 

compromise, respectively (Zhang & Zhang, 2019). 

 

3.0 DATA ANALYSIS AND FINDINGS 

This chapter presents the final findings related to the alloy compositions, metallurgical 

analyses, and mechanical properties of both annealed and tempered steels, specifically XW42, M1, M2, 

and enhanced XW42 (M3). Detailed characterization includes microstructural evaluation, hardness 

testing, and fractography analysis to understand the influence of heat treatment on the material behavior. 

In addition, the machinability of these tool steels was investigated using a two-level full factorial design 

(DoE), considering three key machining parameters: pulse-on time (Ton), voltage (V), and wire tension 

(WT). The study evaluates their impact on surface roughness (SR), material removal rate (MRR), and 

white layer thickness (WLT) to determine the optimal machining performance across different material 

conditions. 

 

3.1 Scanning Electron Microscope (SEM)/Energy Dispersive Spectroscopy 

(EDS) investigation on white layer thickness 

 

Figure 2(a) illustrates Sample 5 from XW42, exhibiting a white layer thickness of 

185.3 ± 5.26μm under the machining parameters of Ton: 2μs, V: 10V, and WT: 80N. Figure 2(b) displays 

Sample 6 from the M1 alloy, which exhibited the thinnest white layer among the studied samples, with 

a thickness of 152.8 ± 3.69μm, achieved at Ton: 2μs, V: 6V, and WT: 120N. As expected, a lower voltage 

resulted in reduced thermal input during machining, thereby decreasing the extent of the white layer 

formation.
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a) b) 

  

c) d) 

 
 

 
Figure 2: White layer thickness of the studied sample 5 of a) XW42, sample 6 of 

b) M1, c) M2 and d) enhanced XW42 (M3) WEDM steels 

 

This observation is supported by findings from Karimi Zarchi et al. (2013), who investigated 

the nitrocarburized surface layer of AISI 1020 in a urea electrolyte, demonstrating similar white layer 

behaviour. This interpretation aligns with studies by Maher et al. (2015) and Azam et al. (2016), both 

of which reported that the maximum white layer thickness occurs at the highest levels of peak current 

and pulse-on time. These machining parameters directly influence the spark energy, thereby increasing 

the thermal input required to melt or vaporize the workpiece surface. 

White layer thickness was found to increase with voltage, a trend further confirmed in the 

subsequent analysis. This phenomenon is anticipated, as higher voltage levels result in greater spark 

energy, causing more material to melt and form deeper craters, thus increasing both material removal 

and heat penetration. Consequently, the formation of a thicker white layer occurs. Najm (2018) also 

reported that wire tension has a minimal influence on white layer thickness. 

Figures 2(b) and 2(c) show nearly identical white layer thickness values of 152.80μm and 

152.83μm for M1 and M2, respectively, under identical machining parameters (Ton: 2μs, V: 6V, WT: 

120N). Although the parameters remained constant, the variation in white layer thickness is attributed 

to differences in alloying composition, where M2 contains niobium and trace amounts (0.005wt%) of 

cerium and lanthanum. Similarly, Figure 2(d) illustrates a white layer thickness of 151.89μm for 

enhanced XW42 (M3), machined under the same parameters. Enhanced XW42 (M3) differs in 

composition by having 0.01wt% of cerium and lanthanum. However, enhanced XW42 (M3) recorded
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the lowest white layer thickness (144.32μm) under medium Ton, V, and WT settings, though it exhibited 

poor surface roughness at 3.54μm. 

A comparative microstructural analysis was conducted for Sample 5 (XW42) and Samples 6 

(M1, M2, M3). The typical microstructural features shown in Figure 2 highlight the surface 

characteristics of the recast layer. In high carbon high chromium (HCHCr) steels, the machined surface 

is generally composed of three distinct zones: the recast layer, the heat-affected zone (HAZ), and the 

base material (Figure 2(a)). The thickness of these layers is non-uniform and varies with machining 

conditions. This non-uniformity is primarily due to fluctuations in the spark gap and current instability 

during the WEDM process. Amorphous regions were observed within the recast layer, formed by re- 

solidified molten material that was not fully removed by flushing. The extremely high thermal gradients, 

followed by rapid quenching, result in both amorphous and martensitic transformations. 

Micro-craters observed in the recast layer (Figures 2(b) and 2(c)) are attributed to localized 

plasma temperatures exceeding 5000 K. This causes material to melt and partially vaporize. The surface 

layer evaporates, and the remaining molten material is flushed away by the dielectric fluid, leaving 

behind crater features with martensitic transformations between martensite plates. 

Energy Dispersive X-ray Spectroscopy (EDS) was employed to analyze the elemental 

composition within the white layer. The technique produces contrast-enhanced images, as shown in 

Figure 2(d), depicting the white layer microstructure of Sample 6 (M3) under 500× magnification after 

WEDM. The layer exhibits four distinct phases, characterized by varying contrast: grey phases 

dominate the upper section, while lighter grey phases appear in the lower region. These variations are 

likely due to temperature and compositional differences induced by WEDM. 

At a low Ton (2μs), low voltage (6V), and high wire tension (120N), the material exhibited the 

highest material removal rate (MRR) of 8.11 × 10⁻³kg. This is attributed to the prolonged pulse-off 

time, which facilitates better flushing and heat concentration within a narrow spark gap, enhancing 

erosion efficiency. 

 

3.2 Scanning Electron Microscope (SEM) Analysis of Surface Roughness 

Figure 3 illustrates SEM images for the machined surfaces of sample 5 (XW42) and sample 6 

(M1, M2, and M3). From Figure 3(a), it can be inferred that XW42, processed under conditions of short 

pulse on time (Ton = 2μs), elevated voltage (10V), and low wire tension (80N), produced shallow craters 

on the surface. These conditions correspond to a relatively low surface roughness (SR) of 2.07 ± 0.04 

μm. The formation of a wider plasma channel during discharge and the accumulation of debris within 

the discharge gap contributed to this effect. Inefficient flushing and the associated high thermal energy 

led to melting on the workpiece surface.
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a) b) 

 

 

 

c) d) 

 

Figure 3: SEM micrograph of a) XW42, b) M1, c) M2 and d) M3 WEDM 

surface. (Notes: circled structure represent M7C3-A and B, shallow craters-B, 

shallow craters-C, small gas holes-d and micro-voids -E and wire wear out - F) 

 

Figure 3, parts (a) through (d), visually present SEM micrographs of XW42, M1, M2, and M3, 

respectively. The images identify various features such as M7C3-type precipitates (labelled A and B), 

shallow craters (C), gas pores (D), micro-voids (E), and wire electrode debris (F). Gas bubbles, formed 

during machining and trapped as the melt solidified, as well as molten materials from the eroded wire 

electrode, contribute to surface irregularities. Not all debris is efficiently flushed out, and some of it 

redeposits onto the machined surfaces. 

Two distinct types of M7C3 carbide precipitates were found on the surface, denoted A and B, 

and verified using X-ray diffraction (XRD) analysis. These carbides manifest as white and silver peaks, 

indicating their distribution within the grain matrix. 

In Figure 3(b), a reduction in surface roughness to 2.03 ± 0.06μm is observed. This sample was 

machined with the same Ton (2μs) but lower voltage (6V) and higher wire tension (120N). These 

changes reduced discharge energy, resulting in smaller craters and a finer surface finish. The WEDM 

surface shows overlapping shallow craters and some gas holes, formed as entrapped gases escaped 

during the solidification of re-deposited material. The lower thermal energy also results in a lower 

presence of molten metals and gas voids. Cracks (D) were observed due to high thermal stresses 

followed by rapid cooling.
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In Figure 3(c), the surface roughness remains similar at 2.03 ± 0.07 μm under identical electrical 

parameters. Surface analysis revealed signs of brass deposition from the wire electrode and oxidation 

effects on the workpiece surface, later confirmed through Energy Dispersive X-ray Spectroscopy (EDS) 

and XRD. Additionally, thermal cracks (B and C) on the surface were identified as detrimental to the 

recast layer’s mechanical integrity. 

Figure 3(d) shows the smoothest surface, with a surface roughness of 1.92 ± 0.12 μm. 

Conditions used include low Ton (2μs), reduced voltage (6V), and high wire tension (120N). These 

parameters significantly reduced thermal input, resulting in smaller and shallower craters. The density 

of micro-voids and solidified materials was minimal. M7C3 precipitates (A and B) were again observed. 

Overall, the experiments demonstrated that sample 5 (XW42) processed under high voltage and 

low wire tension had the highest surface roughness (2.07 ± 0.04μm), while sample 6 (M3) machined 

with lower voltage and higher tension yielded the lowest (1.92 ± 0.12μm). Reduced Ton and voltage not 

only decreased thermal load but also enhanced debris removal due to the longer pulse off time, resulting 

in a smoother finish. 

These findings align with the conclusions drawn by Maher et al. (2016), who reported increased 

surface roughness at higher discharge energy and longer Ton, leading to larger and deeper craters. 

Similarly, Manjaiah et al. (2014) confirmed that increased Ton leads to enhanced crater dimensions, thus 

affecting the final surface texture adversely. 

 

3.3 Optimization factors using full factorial design 

The primary objective of optimization is to identify the most effective configuration that 

satisfies a set of prioritized criteria or constraints. In this study, the aim is to optimize machining 

parameters to enhance key performance indicators, namely material removal rate (MRR), surface 

roughness (SR), and white layer thickness (WLT). A full factorial design of experiment (DoE) was 

employed using a two-level, 2³ factorial design approach. The resulting experimental layout and 

corresponding machining responses for material enhanced XW42 (M3) are presented in Table 4. 

According to the data, MRR values ranged from 0.00103kg/s to 0.00821kg/s, SR values varied from 

1.92μm to 3.73μm, and WLT measurements spanned from 144.32μm to 340.97μm. 

 

 

Table 4: Experimental design complete matrix using two level full 
factorial with effects calculated for enhanced XW42 (M3) 

 

Run Ton V WT MRR SR WLT 
 (μs) (V) (N) (kg/s) (μm) (μm) 

1 6 8 100 0.00141 3.47 200.05 

2 6 8 100 0.00129 3.54 144.32 

3 8 6 120 0.00104 3.62 205.48 
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4 2 6 80 0.00769 2.03 157.44 

5 2 10 80 0.00792 2.08 340.08 

6 2 6 120 0.00811 1.92 184.87 

7 8 10 120 0.00127 3.62 340.97 

8 8 6 80 0.00103 3.39 197.49 

9 8 10 80 0.00821 3.73 340.08 

10 6 8 100 0.00103 3.33 184.87 

11 2 10 120 0.00123 3.16 340.97 

12 6 8 100 0.0014 3.55 197.49 

 
3.3.1 Surface roughness 

The regression equation for SR in terms of coded values is: 

 

 

SR=2.51+0.37A+0.42B+0.18C−0.10AB−0.17AC−0.098BC+0.17A2+0.30B2+0.11C2 

where; A= Pulse on time (Ton); B= Voltage (V); C=Wire tension (WT) 

 
 

The model summary for Surface Roughness (SR) confirms the statistical significance of the 

regression model, as indicated by a high F-value of 26.11 and a p-value of less than 0.0001, suggesting 

the results are not due to chance. The lack of fit test yields an F-value of 0.96 with a p-value of 0.4922, 

which is not significant, indicating that the model adequately fits the experimental data. The model also 

demonstrates excellent predictive performance, with an R2 value of 0.9675, an adjusted R2 of 0.9429, 

and a predicted R2 of 0.8552. Furthermore, the adequate precision value of 17.956, which exceeds the 

desirable threshold of 4.0, confirms that the model has a strong signal-to-noise ratio and is suitable for 

use in navigating the design space. This strong model fit suggests reliable predictions for surface 

roughness based on the three input factors. 

 

 

Figure 3 : Effect between Ton and V on SR
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The 3D surface plot depicts the interaction effect of Pulse-On Time (Ton) and Voltage (V) on 

Surface Roughness (SR) in the machining process. The plot shows that both Ton and Voltage contribute 

to an increase in SR, with surface roughness increasing steadily as Ton increases from 2 to 10µs and 

Voltage increases from 6 to 10V. The surface forms a rising plane, indicating a strong positive 

relationship between these parameters and SR. This suggests that higher energy input, resulting from 

longer Ton and higher Voltage, leads to more aggressive discharges and crater formation, which 

deteriorates surface quality. The interaction effect is evident, although more linear in nature compared 

to MRR, showing that the combined effect of Ton and Voltage compounds the roughness. To minimize 

SR, the process should operate at lower Ton and Voltage settings, reinforcing the importance of 

optimizing discharge energy to achieve better surface finishes. 

 

3.3.2 White Layer Thickness (WLT) 

The regression equation for WLT in terms of coded values 

is: 

WLT=6.93+1.58A+1.15B+0.64C−0.67AB−0.22AC−0.26BC+0.25A2+

0.51B2+0. 

 

The model summary for White Layer Thickness (WLT) shows that the regression model is 

statistically significant, with an F-value of 18.67 and a p-value of less than 0.0001, indicating that the 

results are unlikely due to random variation. The lack of fit is not significant, as evidenced by an F- 

value of 1.35 and a p-value of 0.3382, suggesting that the model fits the experimental data well. The 

model also exhibits strong explanatory and predictive capabilities, with an R2 of 0.9533, an adjusted R2 

of 0.9156, and a predicted R2 of 0.8071. Additionally, the adequate precision value of 17.053, which is 

well above the threshold of 4.0, confirms a sufficient signal-to-noise ratio, making the model reliable 

for exploring the design space. 

This model demonstrates that the input factors significantly influence the white layer thickness 

and that the regression model is robust and predictive. 

 

 

Figure 4 : Effect between Ton and V on WLT
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Based on experimental observations, white layer thickness (WLT) exceeding 160μm is 

considered unsuitable for achieving high-quality surface finishes. Excessive WLT contributes to 

increased brittleness and a higher likelihood of crack formation, compromising the mechanical integrity 

and overall performance of the machined component. 

 

3.4 Predictive modelling for enhanced XW42 (M3) 

Predictive modelling plays a crucial role in forecasting outcomes by analyzing current datasets 

and identifying underlying trends. In this study, simulation software was employed to develop 

predictive models for three key parameters: Material Removal Rate (MRR), Surface Roughness (SR), 

and White Layer Thickness (WLT), using factorial design-based regression. The resulting models are 

represented by Equations 1 and 2 respectively, with average prediction errors of 0.70% for SR, and 

8.2% for WLT. 

The surface roughness (SR) model, derived through a two-level factorial analysis, is as follows: 

 

 

SR = 2.94 + 0.6463A + 0.2037B + 0.1363C − 0.1188AB − 0.1062AC + 0.1062BC 

− 

0.1912ABC (Equation 1) 

 

 

Here, A, B, and C represent the coded levels of the input variables (e.g., Ton, Voltage, and Wire 

Tension, respectively). The interaction terms (AB, AC, BC, ABC) highlight the combined influence of 

these parameters. 

 

The model for predicting white layer thickness (WLT) is simpler and is defined as: 

WLT = 263.42 + 77.10B (Equation 2) 

This implies that WLT is significantly influenced by parameter B (voltage), with a direct and 

proportional relationship. 

The SR model achieved an impressively low average error margin of 0.70%, indicating 

excellent accuracy and reliability in its predictive capability. The small deviation between the predicted 

and actual values demonstrates the model's robustness for optimizing surface roughness in the 

machining of enhanced XW42 (M3). Similarly, the WLT model yielded a prediction error of 8.2%, 

which is within an acceptable range for industrial processes, confirming that the model is suitable for 

forecasting and process control. 

Comparative analysis with previous research reinforces the validity of this approach. For 

instance, Maher et al. (2015) achieved an average prediction error of 2.91% for WLT using an adaptive 

neuro-fuzzy inference system (ANFIS) applied to AISI D2 steel. Likewise, Singh et al. (2014) reported
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an SR prediction error below 10% using response surface methodology (RSM), also on AISI D2. 

These findings support the efficacy of the predictive modelling strategy employed in the present study. 

 

4.0 DISCUSSION AND CONCLUSIONS 

This study investigates the performance of material enhanced XW42 (M3) during the Wire 

Electrical Discharge Machining (WEDM) process, focusing on key responses: White Layer Thickness 

(WLT) and Surface Roughness (SR). The findings show that enhanced XW42 (M3) can achieve a low 

WLT of 144.32μm under medium settings of pulse-on time (Ton), voltage (V), and wire tension (WT) 

(Sample 2). Additionally, enhanced XW42 (M3) demonstrated low SR of 1.92 μm at low Ton and V 

with high WT (Ton = 2μs, V = 6V, WT = 120N) in Sample 6. 

Microscopic analysis confirmed the absence of surface defects such as micro-cracks, globules, 

voids, and debris in the recast layer, indicating stable machining conditions for enhanced XW42 (M3). 

The process optimization was conducted using Full Factorial Design (FFD) with two levels for each of 

the three factors (Ton, V, WT). ANOVA analysis revealed significant factor contributions. For SR, Ton 

had the highest influence (64.45%), followed by V (6.41%) and the three-way interaction (5.64%). For 

WLT, voltage was the most significant factor, contributing 69.23%. 

The statistical models developed were validated with high accuracy, showing R² values of 

99.3% (SR), and 93.5% (WLT), indicating strong predictive capability. The low prediction errors for 

all three responses further confirm the reliability of the model. The study highlights the importance of 

selecting materials with balanced hardness and toughness for WEDM, especially in the tool and die 

industry. It also contributes to the growing research on advanced materials and their compatibility with 

modern machining technologies. In practical terms, the research supports the need for optimized 

machining settings to achieve low-cost, high-quality production. The application of FFD ensures 

efficient process control with minimized sample sizes, reducing time and cost. 
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