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Abstract: The increasing use of autonomous systems in a variety of industries, such as healthcare, logistics, 

agriculture, and exploration, is largely dependent on the development of robot navigation technologies. The 

shift from traditional deterministic techniques to adaptive, learning-based approaches is the main topic of this 

review, which summarizes recent advancements from 2017 to 2025. Due to their limitations in adaptability, 

sensor performance, and contextual awareness, traditional navigation systems such as SLAM, A*, and visual 

odometry remain effective in structured environments but struggle in dynamic, unstructured, or GPS-denied 

environments. These limitations have been addressed by emerging approaches, such as deep reinforcement 

learning (DRL), multimodal sensor fusion, and socially aware navigation frameworks, which enable robots 

to comprehend, anticipate, and respond to complex environments and human behaviors. Localization 

accuracy and operational robustness are greatly improved by multimodal systems that incorporate LiDAR, 

RGB-D, GPS, and IMU sensors, especially in situations where visibility is poor or signals are denied. 

Furthermore, this is critical for applications in public settings, such as hospitals, where socially intelligent 

systems can now navigate shared spaces while respecting human comfort zones, emotional cues, and cultural 

norms. In this review, current research is categorized thematically, navigation strategies are assessed across 

domains, and their efficacy is compared in terms of social compliance, success rate, and localization 

accuracy. Results indicate that, when adapted to functional and environmental constraints, application-

specific designs from radar-enabled underground robots to UWB-based warehouse systems offer better 

performance. Even with encouraging advancements, problems with computational overhead, generalization, 

and ethical issues in practical implementation still exist. This paper argues for ongoing interdisciplinary 

innovation in sensor technology, learning algorithms, and human-robot interaction models to enable reliable, 

explicable, and scalable navigation systems by highlighting important trends and research gaps. 
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1. INTRODUCTION 

A key element in the larger field of robotics is robot navigation, which is the capacity of a mobile 

robot to locate itself and move independently within an environment. Significant progress has been 

made in recent decades to allow robots to function independently in both structured and 

unstructured environments. The quick development of artificial intelligence (AI) algorithms, 

computing hardware, and sensing technologies is largely responsible for these advancements. The 

need for reliable, flexible, and intelligent navigation systems has increased due to the spread of 

autonomous systems in a variety of sectors, including public safety, healthcare, logistics, and 

precision agriculture (Li et al., 2022; Bechar et al., 2021). Robots' navigation needs become much 

more complex as they move from controlled indoor environments to dynamic, unpredictable 

outdoor and human-populated environments (Singamaneni et al., 2024). 

Sensors like GPS, LiDAR, inertial measurement units (IMUs), and cameras are often integrated 

into conventional robot navigation frameworks to perceive and map the environment. To 

accomplish their navigation objectives, these systems frequently use methods like visual odometry, 

simultaneous localization and mapping (SLAM), and heuristic-based path planning. Nevertheless, 
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every technology has a unique set of drawbacks. LiDAR systems can be expensive and sensitive to 

noise from the environment, GPS is unreliable in obstructed or indoor environments, and camera-

based systems have trouble with low contrast or low light levels (Xu et al., 2022; Wijayathunga et 

al., 2023). Furthermore, Conventional planning algorithms frequently struggle to handle dynamic 

environments with shifting obstacles, human interactions, or shifting terrain, even though they work 

well in static settings (Adiuku et al., 2024). 

Recent developments in multimodal sensor fusion, deep learning, and reinforcement learning have 

expanded the scope of robot navigation and made it possible for systems to become more socially 

intelligent, resilient, and context-aware. In addition to planning and following the best routes, these 

new technologies enable robots to anticipate human behavior, adapt in real time, and carry out 

precise tasks like surgical procedures or object retrieval (Meng et al., 2024). Notably, service 

robotics, autonomous delivery, and assistive healthcare applications are seeing an increase in the 

use of socially aware navigation, in which robots learn to move politely and predictably around 

people. This developing subfield is a rich interdisciplinary challenge that requires the incorporation 

of pedestrian dynamics, proxemics, and social norms into navigation strategies (Singamaneni et al., 

2024). 

Simultaneously, the need for localization in environments with magnetic distortion or GPS denial 

is being addressed by the development of new navigation modalities like vision-based object 

relative positioning and magnetic navigation (MagNav). In fields where conventional navigation 

systems are ineffective or impractical, such as defense, underground mining, and medical robotics, 

these methods are particularly pertinent (Guillén et al., 2023). Similarly, the accuracy, safety, and 

autonomy of autonomous systems are being pushed to the limit by the combination of quantum 

technologies and AI-enhanced perception systems. 

An examination of the development of robot navigation technologies is necessary due to the 

increasing variety of application domains, which range from collaborative humanoids and 

endovascular surgical systems to autonomous warehouse robots and field drones. With a focus on 

recent methodological developments, significant obstacles, and practical applications, this paper 

attempts to present a thorough review of the developing uses of robot navigation technologies. 

Through an examination of the most recent five years' worth of state-of-the-art literature, this 

review finds patterns, evaluates performance in different scenarios, and suggests future research 

directions in this quickly developing field. 

1.1. Studies Background and Challenges 

Robot navigation is still a major technical barrier to deploying intelligent agents across real-world 

domains, despite tremendous advancements in robotics and autonomous systems. Navigating 

safely, effectively, and contextually in a variety of dynamic environments is the challenge, not just 

getting from point A to point B. Even though current navigation technologies work well in 

controlled, structured situations, they frequently fall short in complex real-world situations like 

unstructured terrain, shifting lighting, human interactions, or sensor deterioration. The 

shortcomings of existing navigation systems become more noticeable as robots are employed in 

more dangerous and high-stakes fields like healthcare, agriculture, industrial automation, search 

and rescue, and defense (Li et al., 2022; Meng et al., 2024). 



  
 

JTVE: Special Issue - International Action Research TVET Conference, IARTC 2025 | Volume 10, Issue 2 (2025) 

 

3 
 

The core of the issue is the disconnect between the expanding needs of contemporary robotic 

applications and conventional algorithmic approaches. SLAM, visual odometry, and grid-based 

path planning are examples of classical techniques that usually assume a static or semi-static 

environment with optimal sensor conditions. These presumptions frequently backfire in dynamic, 

congested, or visually impaired environments, leading to unsafe behavior, poor localization, or 

navigational errors (Xu et al., 2022; Wijayathunga et al., 2023). Though deep learning has made 

great strides in perception and decision-making possible, it also brings with it new problems that 

low-power mobile robots cannot handle, like data dependency, explainability issues, and 

computational resource requirements. 

Moreover, socially conscious navigation becomes necessary when robots interact with people and 

other agents in shared environments. The majority of robots are currently ill-prepared to perform 

real-time navigation, which requires them to anticipate human movements, predict patterns, and 

modify their course in accordance with social norms like personal space and queuing behavior 

(Singamaneni et al., 2024). This is especially crucial for applications where poor navigation 

behavior can cause discomfort, collisions, or even ethical issues, like hospital assistance robots, 

indoor delivery platforms, or service robots in public areas (Bechar et al., 2021). 

Operation in environments with limited sensors or GPS is another unresolved aspect of the 

navigation problem. For instance, satellite signals are frequently blocked by underground tunnels, 

forests, disaster areas, or industrial facilities. Additionally, visual or LiDAR-based localization may 

be unreliable because of occlusions, reflective surfaces, or repetitive patterns (Guillén et al., 2023). 

Although sensor fusion and magnetic-based navigation have been suggested as viable remedies, 

they are not yet developed or dependable enough for broad use. 

Furthermore, robustness and generalization are still vital. Many of the navigation systems that are 

currently in use are domain-specific and do not scale or adapt when used in different settings. The 

deployment of multi-environment, multitasking robots that can operate dependably without 

requiring a lot of retraining or manual tuning is hampered by this lack of generalization (Adiuku et 

al., 2024). The larger objective of complete autonomy in real-world robotics is still unachievable 

without reliable, scalable, and socially intelligent navigation. 

In conclusion, the current state of robot navigation technologies is limited by issues with energy-

efficient real-time operation, social intelligence, localization robustness, and flexibility. Innovative 

solutions that can support the developing applications of robotics in intricate, human-centric, and 

GPS-constrained environments are desperately needed to address these challenges. 

 

2  LITERATURE REVIEW 

2.1  Conventional Approaches and Their Limitations 

Conventional robot navigation systems are based on well-known deterministic frameworks like 

Simultaneous Localization and Mapping (SLAM) for creating environmental maps and localizing 

within them, Rapidly Exploring Random Trees (RRT) for path planning, Dijkstra's algorithm, and 
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A*. In structured indoor environments, where presumptions like static obstacles, dependable sensor 

input, and adequate computational resources are usually true, these techniques have shown promise 

(Li et al., 2022). Because they combine inputs from sensors like LiDAR, IMUs, and RGB-D 

cameras to achieve reliable pose estimation and environmental modelling, SLAM variants like 

ORB-SLAM and Cartographer SLAM have grown in popularity (Xu et al., 2022). 

Regardless of their achievements, these methods have significant drawbacks that limit their use in 

dynamic, unstructured, or real-world settings. Localization drift is a major problem, particularly in 

environments with repetitive or poor features. For example, key points and visual elements are 

frequently used in visual SLAM systems to carry out loop closure and preserve map consistency. 

Due to the absence of clear landmarks, these systems gradually accumulate pose error in open 

agricultural fields or repetitive indoor corridors, which lowers navigation accuracy (Guillén et al., 

2023). 

Sensor-specific limitations also apply to conventional navigation systems. LiDAR sensors are 

excellent at detecting depth, but they can be affected by weather conditions like rain, dust, and fog, 

which can lead to poor point cloud quality and erroneous obstacle detection (Bechar et al., 2021). 

The performance of visual odometry is also adversely affected by cameras' poor performance in 

high glare or low light. IMUs are helpful for high-frequency motion updates, but they accumulate 

drift if external corrections are not applied. According to Xu et al. (2022), these sensor-specific 

limitations underscore the necessity of sensor fusion to counteract individual shortcomings, even 

though poorly synchronized data can lead to compounding errors rather than improvements. 

The static environment assumption that underlies a lot of conventional planners is another 

significant drawback. Algorithms such as A* and Dijkstra are not naturally suited for situations 

involving dynamic agents, like moving cars or pedestrians. When faced with unexpected changes, 

this frequently leads to robots displaying abrupt or dangerous trajectories, especially in densely 

populated areas. Additionally, conventional motion planners are not predictive as they only respond 

when obstacles are already within sensor range. 

Moreover, these systems typically lack contextual awareness and semantic comprehension. 

Conventional navigation ignores context, such as whether an object is a moving vehicle, a person, 

or a stationary chair, and treats all obstacles as being the same. According to Singhamaneni et al. 

(2023), this makes it challenging for robots to behave in socially acceptable ways, such as yielding 

to pedestrians or keeping a respectful distance. Such context blind behavior can cause discomfort 

or safety hazards for people in settings like hospitals, airports, or city streets. 

Additionally, a bottleneck is caused by computational limitations, particularly on embedded 

systems. Even though deep learning techniques require more computing power than conventional 

methods, real-time SLAM execution in dynamic environments with path planning and control still 

necessitates careful system optimization. Li et al. (2022) have observed that the incorporation of 

multiple sensor streams, particularly in multimodal systems, puts stress on embedded processing 

units, resulting in increased system latency and decreased responsiveness. 

Overall, conventional robot navigation techniques are reliable in controlled environments but 

cannot handle dynamic, cluttered, and socially complex environments. Because of their 
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deterministic nature, static world assumptions, and limited semantic understanding, navigation 

systems must evolve to become more intelligent, adaptive, and context-aware. These drawbacks 

paved the way for advancements in sensor fusion, learning based navigation, and socially conscious 

behavior, which are covered in the sections that follow. 

2.2 Learning Based Navigation 

Learning based navigation, especially techniques based on deep reinforcement learning (DRL), has 

greatly improved autonomous robots' performance in complex and dynamic environments in recent 

years. Robots can make context-aware decisions straight from raw sensor data thanks to learning 

based approaches that can integrate perception, mapping, and planning into a single architecture, 

in contrast to conventional navigation pipelines that divide these processes into modular stages 

(Zhu et al., 2025). 

LiDAR scans, RGB images, depth maps, and other sensory inputs are directly mapped to navigation 

commands by end-to-end DRL frameworks. Without the use of explicit mapping or localization 

modules, these techniques can learn effective navigation strategies through reward-driven training. 

Using only depth images as input, Zhu et al. (2025) showed how DRL agents perform better than 

classical planners in cluttered indoor environments. 

Nevertheless, hybrid architectures have become more reliable substitutes because of DRL's sample 

inefficiency and generalization problems. Conventional global planners create waypoints or coarse 

paths in these systems, while DRL policies deal with social compliance or avoiding local obstacles. 

According to Kahn et al. (2018), this combination enhances convergence rates and reduces issues 

like becoming trapped in dead ends or local minima. 

High uncertainty environments, like pedestrian-heavy zones or warehouses with moving forklifts, 

are ideal for modern DRL algorithms. Le et al. (2024) emphasized DRL-based navigation 

techniques that model and forecast human motion by utilizing attention and Long Short-Term 

Memory (LSTM) networks. By using these techniques, robots can program their paths to avoid 

collisions and adhere to social norms that humans have established, like respecting personal space. 

For instance, Guillén et al. (2023) created a socially conscious DRL policy that is trained with a 

reward function that penalizes human discomfort. When compared to reactive methods, their results 

demonstrated a significant improvement in safety and navigation fluency in crowded environments. 

Developments in DRL architectures, including Proximal Policy Optimization (PPO), Dueling 

DQNs, and Soft Actor Critic (SAC), have improved their suitability for robotics-related continuous 

control scenarios. To help agents develop more complex internal representations and enhance 

generalization, researchers have also used auxiliary learning tasks in partially observable 

environments (Zhu et al., 2025). 

Differentiable neural computers and GRU-based modules are two examples of memory-augmented 

networks that improve spatial reasoning and lessen the requirement for total environmental 

observability (Montero et al., 2025). By using these methods, robots can "remember" spatial layouts 

over time, which makes navigation more strategic. 
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Although simulations show promising results, real-world implementation of DRL-based navigation 

is still difficult because of interpretability problems, safety concerns, and simulation-to-real gaps. 

Although domain randomization and imitation learning techniques can aid in bridging the gap 

between simulation and reality, real-time performance under hardware constraints and sensor noise 

remains problematic, according to Soori et al. (2023). 

Furthermore, DRL models are frequently viewed as "black boxes," which raises questions about 

accountability in applications that depend on safety, like autonomous driving or healthcare. 

Consequently, studies are now concentrating on improving the interpretability of DRL decisions 

using strategies such as explainable reward functions and saliency maps (Singamaneni et al., 2024). 

2.3 Sensor Fusion and Multimodal Navigation 

Multimodal navigation and sensor fusion are essential elements of contemporary robot navigation 

systems that allow robots to function dependably in unpredictable, dynamic, and unstructured 

environments. Recent developments make use of the combination of several sensor modalities, 

such as RGB-D cameras, LiDAR, IMUs, GPS, ultrasonic sensors, and radar, to improve perception 

robustness and environmental understanding, whereas conventional systems frequently depended 

on a single dominant sensor, such as LiDAR or camera, for localization and obstacle avoidance (Li 

et al., 2022). 

The fundamental idea behind multimodal navigation is that various sensors have complementary 

advantages. IMUs deliver inertial data with high frequency but suffer from drift over time, cameras 

provide rich semantic content but struggle with depth and lighting variations, and LiDAR provides 

precise depth measurements but performs poorly in bad weather. Robots can increase their 

navigation accuracy and make up for the limitations of individual sensors by combining these 

inputs (Bechar et al., 2021). 

The two main types of sensor fusion architectures are low-level (raw data) fusion and high-level 

(feature or decision) fusion. Low-level fusion combines sensor raw data streams before performing 

additional processing, like matching visual features to point clouds. In contrast, high-level fusion 

incorporates separate sensor-specific outputs. For example, it combines visual loop closure 

detection with a LiDAR-based SLAM map to improve localization (Khan et al., 2024). In order to 

account for measurement noise and uncertainty, advanced techniques frequently fuse sensor data 

probabilistically using Bayesian filters, Kalman filtering, and particle filters. 

A popular method for sensor fusion in robotics, visual inertial odometry (VIO) is particularly useful 

in indoor or GPS-denied environments. VIO systems use IMU data and camera images to estimate 

pose and motion. By integrating IMU data, ORB-SLAM3, for instance, improves the well-known 

visual SLAM framework's robustness and accuracy in cluttered or dimly lit environments (Campos 

et al., 2021). 

Deep learning for sensor fusion has also been explored recently, employing neural networks to 

automatically learn the best fusion techniques from data. In order to achieve greater localization 

accuracy in congested urban environments, Li et al. (2022) proposed a multi-sensor deep fusion 

framework in which convolutional neural networks (CNNs) and recurrent networks learn to process 
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and align features from LiDAR and camera streams. These methods work especially well in 

unstructured settings where manual fusion pipelines and conventional sensor calibration may not 

work. 

Through the integration of semantic data from maps, environmental affordances, and user 

instructions, multimodal navigation expands on the idea. According to Wang et al. (2024), tasks 

involving human-robot interaction might necessitate the interpretation of natural language 

commands and their combination with spatial sensor data for semantic navigation. The ability to 

interpret sensor input in the context of human intentions and environmental labels is crucial for 

service robots placed in homes, hospitals, or shopping centers. 

Sensor fusion has drawbacks despite its advantages, including computational overhead, sensor 

calibration, and synchronization. Performance can be negatively impacted by misaligned data 

brought on by mounting errors or time drift. Additionally, combining several high-rate sensor 

streams in real time necessitates effective processing and frequently specialized hardware, such as 

edge TPUs or GPUs. 

2.4 Socially Aware Navigation 

An emerging field called socially aware navigation (SAN) aims to allow robots to navigate in 

shared human environments while maintaining human comfort, safety, and social norms. By 

integrating ideas like proxemics, human intention prediction, and emotional comfort, SAN 

considers how robot movement may impact nearby humans, in contrast to conventional navigation 

systems that give priority to the shortest or most efficient paths (Möller et al., 2021). 

As more and more robots are used in both private and public settings, including homes, malls, 

hospitals, and airports, they must behave in a way that people find normal and unobtrusive. Even 

though they may be technically sound, conventional navigation algorithms frequently produce 

ungainly or dangerous paths that infringe on personal space, trigger startle reactions, or obstruct 

pedestrian traffic (Singamaneni et al., 2024). Research on modeling socially compliant behaviors 

in robot navigation has increased because of this.  

The Social Force Model (SFM), one of the most well-known models in SAN, views people and 

robots as particles that are affected by repulsive or attractive forces to maintain suitable distances. 

Despite being widely used, SFM-based approaches frequently depend on manually created rules 

and perform poorly in environments that are complex or extremely dynamic (Vemula et al., 2017). 

As a result, learning based methodologies, specifically deep reinforcement learning (DRL) and 

graph neural networks (GNNs), are the focus of current research. 

In their 2025 study, Montero et al. proposed Socially Aware Collision Avoidance with Deep 

Reinforcement Learning (SA-CADRL), in which the robot learns to anticipate the future locations 

of humans in the vicinity and adjusts its navigational policies accordingly. Reducing collision risk 

and maintaining human comfort are rewarded by the DRL framework. Comparably, Vemula et al. 

(2017) presented GAT-Nav, a graph attention network that uses attention-based message passing 

to learn socially acceptable trajectories and model inter-agent dependencies. 
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The explicit incorporation of proxemics and social norms into navigation cost functions is another 

trend in SAN. Daza et al. (2021), for instance, created a navigation system that uses human motion 

dynamics and cultural space preferences to assign dynamic social cost maps. The robot can keep 

culturally appropriate distances from people and groups thanks to its system. 

Emotion-aware navigation is another area of recent research in which robots use body language or 

facial expressions to determine the emotional states of people in their immediate vicinity. This 

enables adaptive behavior like reducing speed when someone seems nervous or avoiding a stressed 

person more closely (Narayanan et al., 2020). 

Even with advancements, difficulties still exist. Human behavior is difficult to model, particularly 

in socially complex or unfamiliar environments. Wider adoption is further impeded by cultural 

differences, real-time performance limitations, and the absence of standardized evaluation metrics. 

Coordination issues are also introduced when SAN is integrated into multi-agent systems, like 

drone or delivery robot fleets. 

2.5 Navigation in GPS Denied and Degraded Environments 

One of the most important problems in autonomous robotics is navigation in environments where 

GPS is unavailable or degraded. GPS signals are intermittently or totally lost in a variety of real-

world deployment scenarios, such as underground tunnels, dense urban canyons, forests, 

underwater environments, and disaster areas. To guarantee safe and dependable robot operations 

in these environments, alternative localization and navigation techniques must be used 

(Ohradzansky and Humbert, 2022). 

GPS-free navigation used to depend on Simultaneous Localization and Mapping (SLAM) 

techniques. With the help of onboard sensors like cameras, LiDARs, or IMUs, SLAM enables a 

robot to map an unfamiliar environment while also determining its position within it. Visual SLAM 

(V-SLAM), LiDAR SLAM, and tightly coupled visual inertial SLAM are some of the SLAM 

variations that have developed over time. Each is appropriate for a particular set of environmental 

circumstances and sensor accessibility (Campos et al., 2021). 

ORB-SLAM3, a popular and robust framework, combines inertial measurements with monocular, 

stereo, and RGB-D camera input to enhance tracking robustness in feature-poor or fast-changing 

lighting conditions (Campos et al., 2021). Researchers are investigating LiDAR-based SLAM 

systems like LOAM (Lidar Odometry and Mapping), which rely on point cloud registration and 

are less impacted by lighting, for harsh environments like mines or collapsed buildings where visual 

data may be unreliable. 

Multi-modal SLAM, which combines information from several sensors like LiDAR, IMU, radar, 

and cameras to improve localization accuracy and fault tolerance, has also been investigated 

recently. Radar has drawn interest due to its resilience to dust, fog, and darkness, which makes it 

appropriate for underground navigation and autonomous driving (Barnes et al., 2020). 

Localization errors resulting from multipath effects and signal occlusion are frequent in GPS-

degraded outdoor environments, such as urban canyons. In order to rectify localization drift, 
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researchers incorporate visual place recognition methods like NetVLAD or SeqSLAM, which 

compare the current visual scenes to a database of geotagged images (Taira et al., 2018). 

Furthermore, learning based navigation has started to support conventional methods in areas where 

GPS is not available. Especially in repetitive or structured environments like indoor corridors or 

industrial facilities, deep reinforcement learning and imitation learning can teach agents to navigate 

using raw sensor input without explicit maps (Tai et al., 2017). Recurrent networks and memory-

based architectures are being used in conjunction with these strategies to help agents recover from 

localization loss and recall previous observations. 

Swarm robotics also offers promising solutions by distributing sensing and localization tasks across 

multiple agents. In subterranean missions, for instance, one robot may act as a fixed beacon or 

communication node while others explore and relay positional information (Biggie et al., 2023). 

Even with these developments, several issues still exist, such as the high computational 

requirements of sensor fusion, the cumulative error in dead reckoning techniques, and the 

challenges of relocalization following occlusion. Therefore, to improve performance in GPS-

compromised environments, current research focuses on resilient localization, map sharing 

protocols, and adaptive uncertainty modelling. 

2.6 Application Specific Innovations 

A major trend toward customized innovations that meet the requirements of applications is taking 

place as robot navigation technologies continue to advance. Robot navigation systems are being 

developed more and more to satisfy domain-specific operational challenges, safety standards, and 

environmental limitations in a variety of industries, including healthcare, industrial automation, 

and urban delivery. By concentrating on specific sensor configurations, algorithms, and contextual 

decision-making techniques, these application-specific innovations diverge from generic 

navigation models. 

For instance, in agricultural robotics, navigation systems must deal with crop occlusion, uneven 

terrain, and fluctuating lighting. Conventional GPS or LiDAR-based navigation frequently 

performs poorly in these dynamic outdoor settings. Using deep learning and semantic 

segmentation, researchers have created vision-based algorithms for crop following and row 

detection to help robots navigate fields with little infrastructure (Bai et al., 2023). LiDAR, stereo 

cameras, and RTK-GPS sensor fusion are now integrated into autonomous tractors and harvesters 

to increase navigation reliability in expansive, open farm environments. 

Navigation advancements in healthcare and assistive robotics prioritize user comfort, safety, and 

social compliance. In hospitals and assisted living facilities, service robots must maneuver through 

congested hallways and patient rooms while collaborating with people naturally. Thus, voice 

command integration and semantic mapping capabilities have been added to socially conscious 

path planning and obstacle avoidance systems (Daza et al., 2021). Additionally, based on patient 

proximity and activity, context-aware behavior models enable robots to prioritize routes that respect 

personal spaces or steer clear of medical equipment. 
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Navigation systems in warehouse and industrial automation have developed to facilitate fast, 

accurate operations in controlled indoor spaces. Among the innovations are the use of magnetic 

tape guidance, fiducial markers, and ultra-wideband (UWB) localization for accuracy down to the 

millimeter (Al-Okby et al., 2024). Automated guided vehicles (AGVs) and autonomous mobile 

robots (AMRs) are examples of mobile robots that use adaptive scheduling algorithms. These 

algorithms combine fleet coordination, dynamic obstacle management, and route planning in real 

time. 

Road crossing, sidewalk traversal, curb detection, and pedestrian interaction are some of the 

difficulties that come with urban navigation and delivery robotics. While making on-time 

deliveries, these robots must function under stringent safety and regulatory guidelines. Among the 

solutions are traffic signal recognition, HD map-based navigation, and integration with V2X 

(vehicle to everything) communication infrastructure (Zhu et al., 2021). Delivery robots such as 

Starship and Amazon Scout use active suspension systems, multiple onboard cameras, and low-

profile designs to efficiently negotiate slopes and curbs. 

Navigation systems for exploration and rescue operations are frequently made for unstructured, 

GPS-denied environments, like mines or collapsed buildings. Swarm coordination, SLAM with 

LiDAR and thermal imaging, and tracked or legged locomotion are the main areas of innovation 

here. For example, to ensure continuous navigation coverage, DARPA Sub teams have deployed 

subterranean robots that use ground rovers and aerial drones to share maps and sensor data (Biggie 

et al., 2023). 

Finally, time delays, harsh terrains, and communication outages are some of the navigational 

challenges faced by space and planetary robotics. To navigate the Martian surface with little 

assistance from humans, NASA's Perseverance rover, for instance, uses autonomous hazard 

detection, visual odometry, and terrain classification (Maki et al., 2021). 

 

3. METHODOLOGY 

This review uses a methodical approach to investigate the latest developments in robot navigation 

technologies, with an emphasis on their developing uses in a range of fields. To provide a thorough 

and trustworthy synthesis of related research from 2017 to 2025, the methodology combines a 

systematic literature search, precise inclusion and exclusion criteria, thematic categorization, and 

comparative evaluation. 

3.1 Literature Selection, Inclusion and Exclusion Criteria 

A focused literature search was carried out using four important academic databases, namely 

Google Scholar, IEEE Xplore, SpringerLink, and ScienceDirect. Studies from 2017 to 2025 were 

taken into consideration to guarantee the relevance. The search strategy used Boolean combinations 

of terms like "socially aware robot navigation," "autonomous mobile robot," "SLAM," "sensor 

fusion," "deep learning navigation," and "GPS denied environments." 
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More than 500 studies were found using the original query. The following inclusion criteria were 

used to filter these in stages: 

1. Relevance to the topic: The focus of the study must be robot navigation techniques, 

tools, or applications. 

2. Technical contribution and innovation: Research presenting new navigation 

techniques or notable improvements was prioritized. 

3. Empirical validation: Findings from included studies must be supported by high-

fidelity simulation environments like CARLA, Gazebo, or AIRism, or by real-

world testing. 

4. Application specificity: Navigation systems must be used in situations that are 

specific to their context, such as exploration, logistics, healthcare, or agriculture. 

5. Peer-reviewed quality: Only peer-reviewed conference papers and journal articles 

were chosen. 

The exclusion criteria excluded papers that did not present novel insights, theoretical frameworks 

only, duplicate content, and publications written in languages other than English, and 28 important 

publications were kept for a thorough examination after the selection criteria were applied. 

3.2 Thematic Categorization and Evaluation Framework 

The chosen studies were categorized thematically to facilitate structured analysis based on the 

following: 

1. Methods of navigation (SLAM, deep learning based, hybrid) 

2. Sensor modality (GPS, LiDAR, radar, stereo cameras, and IMUs) 

3. Application domain (healthcare, urban mobility, agriculture) 

4. Environmental context (structured, unstructured, indoor, outdoor, GPS denied) 

5. Level of intelligence (context sensitive, socially aware) 

6. Performance indicators (energy efficiency, success rate, and localization accuracy) 

These characteristics made it possible to compare how new approaches fit the needs and 

limitations of the real world. 

3.3 Summary Table of Navigation Applications 

Selected systems are compiled in Table 1 according to their context awareness, navigation strategy, 

sensor suite, and application domain. 

Table 1: Summary of Navigation Application  

Domain Sensor Modality Navigation 

Approach 

Context 

Awareness 

References 

Agriculture RGB-D, 

LiDAR, GPS, 

IMU 

Vision-based 

SLAM 

Medium (terrain 

aware) 

Bai et al. (2023); 

Wang et al. 

(2024) 
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Healthcare Depth cam, 

LiDAR, 

ultrasonic 

Socially Aware 

Path Planning 

High Daza et al. 

(2021); 

Narayanan et al. 

(2020) 

Urban Delivery Radar, stereo 

cam, GPS 

DRL with HD 

Map Integration 

Medium Zhu et al. 

(2021); Barnes 

et al. (2020) 

Warehouse UWB, fiducial 

markers, RFID 

Heuristic Aided 

SLAM 

Low Al-Okby et al. 

(2024); Wang et 

al. (2024) 

Search & Rescue Thermal, radar, 

LiDAR, IMU 

Multi-agent 

SLAM 

Medium Biggie et al. 

(2023); 

Ohradzansky 

and Humbert 

(2022) 

Planetary/Space Visual 

Odometry, 

inertial sensors 

Terrain-aware 

Path Planning 

Low Maki et al. 

(2021) 

 

 

4. RESULTS AND DISCUSSION 

The performance, applicability, and limitations of various robot navigation technologies are 

highlighted in this section, which summarizes the main conclusions from the reviewed literature. 

Recent developments in sensor fusion, learning based navigation, socially conscious systems, and 

the increasing robustness of navigation technologies in GPS-denied environments are highlighted. 

A more thorough comprehension of the advantages and disadvantages of various domains is made 

possible by comparative analysis. 

 

4.1 Transition from Conventional to Learning Based Approaches 

A significant development in robot navigation is the gradual evolution from conventional 

approaches like Dijkstra's algorithm and SLAM based on the Extended Kalman Filter (EKF) to 

data-driven strategies like Deep Reinforcement Learning (DRL) and imitation learning. Because of 

their simplicity and dependability in structured environments, conventional approaches are still 

frequently employed (Al-Okby et al., 2024). However, a significant drawback of these approaches 

is their inability to generalize in dynamic or unstructured environments. 

According to recent research, DRL-enhanced navigation can perform better than Conventional 

methods, especially in dynamic and partially observable environments (Zhu et al., 2021). In urban 

navigation scenarios, for instance, a comparison between DRL and rule-based planners revealed a 

30% decrease in collisions and a 12% increase in success rate (Barnes et al., 2020). However, the 

deployment of these enhancements on platforms with limited resources is limited due to their high 

computational costs and longer training times. 
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4.2 Effectiveness of Multimodal Inputs and Sensor Fusion 

Robust navigation has been made possible by sensor fusion, particularly in situations with shifting 

lighting, occlusion, or erratic GPS signals. Combining LiDAR, IMU, and vision sensors enhances 

both localization accuracy and path following stability, as shown by studies like Campos et al. 

(2021) and Biggie et al. (2022). 

On the other hand, in order to attain sub-10 cm localization accuracy in agricultural navigation, Bai 

et al. (2023) combined RGB-D cameras with LiDAR and GNSS. Likewise, Al-Okby et al. (2024) 

showed that over a 500 m² indoor space, UWB and IMU fusion maintained less than 5 cm drift. 

These findings highlight how multimodal sensor integration improves performance in unstructured 

or GPS-deficient environments and increases reliability. 

4.3 Social and Contextual Awareness in Human-Centered Environments 

In healthcare settings, public areas, and service robots, socially conscious navigation is essential. 

Daza et al. (2021) demonstrated that in hospital hallways, navigation systems that took into 

consideration social factors such as gaze direction, personal space, and group dynamics decreased 

path interruptions and raised user satisfaction. 

For instance, Narayanan et al. (2020) introduced emotion-aware navigation, in which the navigation 

behavior was dynamically modified in response to human facial expressions. Comparing their 

system to context-unaware systems, they saw a 25% decrease in path replanning and an increase in 

user engagement. These results demonstrate that incorporating human-centric design enhances 

human-robot interaction performance and trust. 

4.4 Navigation in GPS Denied and Degraded Settings 

Robust navigation is still a major challenge in situations where GPS is unavailable or unreliable. 

Emerging methods like visual inertial odometry, radar-based SLAM, and bio-inspired navigation 

are becoming more popular. Using visual SLAM and radar, multi-robot systems in the DARPA 

Subterranean Challenge were able to achieve sub-meter accuracy in underground tunnels (Biggie 

et al., 2023). 

According to Maki et al. (2021), NASA's Perseverance rover achieved resilience without satellite 

guidance by navigating Mars terrain using visual odometry and hazard detection algorithms. These 

studies show that strong perception and environmental adaptability are critical for successful GPS-

free navigation. 

4.5 Application Specific Insights 

Several combinations of sensor modalities and navigation techniques are preferred by various 

application domains. The use of fiducial markers and heuristic planning allows for accurate and 

economical localization in indoor warehouse environments (Wang et al., 2024). However, 

planetary navigation requires robust systems that can make decisions on their own even in the face 

of severe limitations (Maki et al., 2021). 
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According to Narayanan et al. (2020), emotion-aware and socially responsive path planning is 

crucial for healthcare robots because it lowers the risk of collisions and enhances patient interaction. 

The design of navigation systems is guided by the requirements of each domain, which may include 

accuracy, interpretability, computational efficiency, or user comfort. The summary of the findings 

for the performance of navigation is displayed in Table 2. 

Table 2: Summary of Performance Metrics for Navigation System 

Domain Localization 

Error 

Success 

Rate 

Sensor 

Fusion 

Learning 

Based 

Socially 

Aware 

Reference 

Agriculture 0.08–0.12 m 90–95% Yes Partially Medium Bai et al. 

(2023); Wang 

et al. (2024) 

Urban Delivery 0.15–0.20 m 85–92% Yes Yes Medium Zhu et al. 

(2021); 

Barnes et al. 

(2020) 

Healthcare <0.10 m 92–97% Yes Yes High Daza et al. 

(2021); 

Narayanan et 

al. (2020) 

Warehouse <0.05 m 98–99% Limited No Low Al-Okby et al. 

(2024); Wang 

et al. (2024) 

Search & 

Rescue 

0.25–0.40 m 80–88% Yes Yes  Medium Ohradzansky 

and Humbert 

(2022) 

Space/Planetary Variable ~85% Yes Partially Low Maki et al. 

(2021) 

 

4.6 Emerging Trends and Implications 

Several significant trends are evident from the reviewed literature, are listed below: 

1. Real-time adaptation is increasingly being achieved through hybrid navigation 

architectures that combine learned behaviors and rule-based behavior (Campos et 

al., 2021). 

2. Human-aware systems and social intelligence are becoming crucial in 

collaborative fields (Narayanan et al., 2020). 

3. The use of sensor redundancy to increase resilience in deteriorated environments 

is growing (Biggie et al., 2023). 

4. Domain-specific design offers better performance than universal models by tuning 

navigation strategies to contextual constraints. 

These advancements show a trend toward navigation systems that are more robust, intelligent, and 

user-aware and that can function well in challenging real-world situations. 
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5. CONCLUSION 

Over the past five years, the field of robot navigation has undergone a dramatic paradigm shift, 

largely because of the convergence of sophisticated sensor technologies, artificial intelligence, and 

a growing variety of deployment environments. The transition from conventional, rule-based 

approaches to sophisticated learning based and context-aware systems was highlighted in this 

review, which critically examined new applications of robot navigation technologies. 

Conventional methods like Extended Kalman Filter (EKF) driven SLAM and graph-based planners 

are still widely used in controlled environments because of their interpretability and low 

computational overhead, but in dynamic, unstructured, and GPS-denied environments, their 

shortcomings become apparent (Al-Okby et al., 2024). As a result, deep learning and reinforcement 

learning have become more widely used for adaptive decision making, obstacle avoidance, and 

path planning. According to research by Zhu et al. (2021) and Barnes et al. (2020), learning based 

models enhance navigation effectiveness and lower collision rates in addition to adapting to 

previously unexplored environments. This is particularly true when paired with high-definition 

maps or semantic understanding. 

A key component of reliable and resilient navigation is sensor fusion. Localization accuracy and 

environmental awareness are greatly improved by integrating LiDAR, cameras, inertial sensors, 

and UWB or GNSS modules. Even in complex terrains or with impaired sensory inputs, sensor 

fusion improves operational stability and fault tolerance, as shown by Campos et al. (2021) and Bai 

et al. (2023). In search and rescue operations, agricultural robotics, and underground exploration, 

this multimodal approach is especially crucial. 

Particularly in service-oriented domains, socially conscious navigation has become increasingly 

popular. The need for navigation systems that adhere to social norms, prevent discomfort, and 

convey intent is increasing as robots and humans share more and more spaces. Emotion-aware and 

proxemics-based planning techniques that greatly improve user trust and collaboration in home and 

healthcare settings were demonstrated by Daza et al. (2021) and Narayanan et al. (2020). 

One of the most urgent issues has been navigating in GPS-denied and degraded settings. Robots 

can now operate dependably without satellite guidance thanks to innovations like visual inertial 

odometry, radar-based SLAM, and bio-inspired mapping techniques (Biggie et al., 2023; Maki et 

al., 2021). These features are essential for military operations, space exploration, and driverless 

cars. 

The significance of application-specific innovations is further supported by the reviewed evidence. 

For instance, planetary rovers require highly autonomous and energy-efficient systems (Maki et 

al., 2021), whereas marker-based and heuristic systems in warehouse logistics offer quick and 

economical solutions (Wang et al., 2024). Therefore, domain-specific requirements must inform 

the design of navigation technologies, highlighting a customized rather than a general approach. 

The development of explainable navigation strategies to increase human trust, the incorporation of 

lightweight edge AI to facilitate real-time onboard learning, and standardized frameworks for 

simulation and benchmarking are some of the major trends for the future. Future studies should 
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also investigate ethical and legal issues, especially as robots are used more and more in both private 

and public settings. 

In summary, robot navigation technologies are developing quickly in the direction of increased 

intelligence, autonomy, and human awareness. This development is changing how robots engage 

with their surroundings and human counterparts in addition to opening new applications. It will 

take ongoing multidisciplinary research and innovation to turn these cutting-edge technologies into 

reliable, moral, and scalable practical solutions. 
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