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Abstract: The increasing use of autonomous systems in a variety of industries, such as healthcare, logistics,
agriculture, and exploration, is largely dependent on the development of robot navigation technologies. The
shift from traditional deterministic techniques to adaptive, learning-based approaches is the main topic of this
review, which summarizes recent advancements from 2017 to 2025. Due to their limitations in adaptability,
sensor performance, and contextual awareness, traditional navigation systems such as SLAM, A*, and visual
odometry remain effective in structured environments but struggle in dynamic, unstructured, or GPS-denied
environments. These limitations have been addressed by emerging approaches, such as deep reinforcement
learning (DRL), multimodal sensor fusion, and socially aware navigation frameworks, which enable robots
to comprehend, anticipate, and respond to complex environments and human behaviors. Localization
accuracy and operational robustness are greatly improved by multimodal systems that incorporate LiDAR,
RGB-D, GPS, and IMU sensors, especially in situations where visibility is poor or signals are denied.
Furthermore, this is critical for applications in public settings, such as hospitals, where socially intelligent
systems can now navigate shared spaces while respecting human comfort zones, emotional cues, and cultural
norms. In this review, current research is categorized thematically, navigation strategies are assessed across
domains, and their efficacy is compared in terms of social compliance, success rate, and localization
accuracy. Results indicate that, when adapted to functional and environmental constraints, application-
specific designs from radar-enabled underground robots to UWB-based warehouse systems offer better
performance. Even with encouraging advancements, problems with computational overhead, generalization,
and ethical issues in practical implementation still exist. This paper argues for ongoing interdisciplinary
innovation in sensor technology, learning algorithms, and human-robot interaction models to enable reliable,
explicable, and scalable navigation systems by highlighting important trends and research gaps.

Keywords: Mobile Robot Navigation, Sensor-Based Navigation, Learning Based Navigation

1. INTRODUCTION

A key element in the larger field of robotics is robot navigation, which is the capacity of a mobile
robot to locate itself and move independently within an environment. Significant progress has been
made in recent decades to allow robots to function independently in both structured and
unstructured environments. The quick development of artificial intelligence (Al) algorithms,
computing hardware, and sensing technologies is largely responsible for these advancements. The
need for reliable, flexible, and intelligent navigation systems has increased due to the spread of
autonomous systems in a variety of sectors, including public safety, healthcare, logistics, and
precision agriculture (Li et al., 2022; Bechar et al., 2021). Robots' navigation needs become much
more complex as they move from controlled indoor environments to dynamic, unpredictable
outdoor and human-populated environments (Singamaneni et al., 2024).

Sensors like GPS, LiDAR, inertial measurement units (IMUs), and cameras are often integrated
into conventional robot navigation frameworks to perceive and map the environment. To
accomplish their navigation objectives, these systems frequently use methods like visual odometry,
simultaneous localization and mapping (SLAM), and heuristic-based path planning. Nevertheless,
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every technology has a unique set of drawbacks. LiDAR systems can be expensive and sensitive to
noise from the environment, GPS is unreliable in obstructed or indoor environments, and camera-
based systems have trouble with low contrast or low light levels (Xu et al., 2022; Wijayathunga et
al., 2023). Furthermore, Conventional planning algorithms frequently struggle to handle dynamic
environments with shifting obstacles, human interactions, or shifting terrain, even though they work
well in static settings (Adiuku et al., 2024).

Recent developments in multimodal sensor fusion, deep learning, and reinforcement learning have
expanded the scope of robot navigation and made it possible for systems to become more socially
intelligent, resilient, and context-aware. In addition to planning and following the best routes, these
new technologies enable robots to anticipate human behavior, adapt in real time, and carry out
precise tasks like surgical procedures or object retrieval (Meng et al., 2024). Notably, service
robotics, autonomous delivery, and assistive healthcare applications are seeing an increase in the
use of socially aware navigation, in which robots learn to move politely and predictably around
people. This developing subfield is a rich interdisciplinary challenge that requires the incorporation
of pedestrian dynamics, proxemics, and social norms into navigation strategies (Singamaneni et al.,
2024).

Simultaneously, the need for localization in environments with magnetic distortion or GPS denial
is being addressed by the development of new navigation modalities like vision-based object
relative positioning and magnetic navigation (MagNav). In fields where conventional navigation
systems are ineffective or impractical, such as defense, underground mining, and medical robotics,
these methods are particularly pertinent (Guillén et al., 2023). Similarly, the accuracy, safety, and
autonomy of autonomous systems are being pushed to the limit by the combination of quantum
technologies and Al-enhanced perception systems.

An examination of the development of robot navigation technologies is necessary due to the
increasing variety of application domains, which range from collaborative humanoids and
endovascular surgical systems to autonomous warehouse robots and field drones. With a focus on
recent methodological developments, significant obstacles, and practical applications, this paper
attempts to present a thorough review of the developing uses of robot navigation technologies.
Through an examination of the most recent five years' worth of state-of-the-art literature, this
review finds patterns, evaluates performance in different scenarios, and suggests future research
directions in this quickly developing field.

1.1 Studies Background and Challenges

Robot navigation is still a major technical barrier to deploying intelligent agents across real-world
domains, despite tremendous advancements in robotics and autonomous systems. Navigating
safely, effectively, and contextually in a variety of dynamic environments is the challenge, not just
getting from point A to point B. Even though current navigation technologies work well in
controlled, structured situations, they frequently fall short in complex real-world situations like
unstructured terrain, shifting lighting, human interactions, or sensor deterioration. The
shortcomings of existing navigation systems become more noticeable as robots are employed in
more dangerous and high-stakes fields like healthcare, agriculture, industrial automation, search
and rescue, and defense (Li et al., 2022; Meng et al., 2024).
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The core of the issue is the disconnect between the expanding needs of contemporary robotic
applications and conventional algorithmic approaches. SLAM, visual odometry, and grid-based
path planning are examples of classical techniques that usually assume a static or semi-static
environment with optimal sensor conditions. These presumptions frequently backfire in dynamic,
congested, or visually impaired environments, leading to unsafe behavior, poor localization, or
navigational errors (Xu et al., 2022; Wijayathunga et al., 2023). Though deep learning has made
great strides in perception and decision-making possible, it also brings with it new problems that
low-power mobile robots cannot handle, like data dependency, explainability issues, and
computational resource requirements.

Moreover, socially conscious navigation becomes necessary when robots interact with people and
other agents in shared environments. The majority of robots are currently ill-prepared to perform
real-time navigation, which requires them to anticipate human movements, predict patterns, and
modify their course in accordance with social norms like personal space and queuing behavior
(Singamaneni et al., 2024). This is especially crucial for applications where poor navigation
behavior can cause discomfort, collisions, or even ethical issues, like hospital assistance robots,
indoor delivery platforms, or service robots in public areas (Bechar et al., 2021).

Operation in environments with limited sensors or GPS is another unresolved aspect of the
navigation problem. For instance, satellite signals are frequently blocked by underground tunnels,
forests, disaster areas, or industrial facilities. Additionally, visual or LIDAR-based localization may
be unreliable because of occlusions, reflective surfaces, or repetitive patterns (Guillén et al., 2023).
Although sensor fusion and magnetic-based navigation have been suggested as viable remedies,
they are not yet developed or dependable enough for broad use.

Furthermore, robustness and generalization are still vital. Many of the navigation systems that are
currently in use are domain-specific and do not scale or adapt when used in different settings. The
deployment of multi-environment, multitasking robots that can operate dependably without
requiring a lot of retraining or manual tuning is hampered by this lack of generalization (Adiuku et
al., 2024). The larger objective of complete autonomy in real-world robotics is still unachievable
without reliable, scalable, and socially intelligent navigation.

In conclusion, the current state of robot navigation technologies is limited by issues with energy-
efficient real-time operation, social intelligence, localization robustness, and flexibility. Innovative
solutions that can support the developing applications of robotics in intricate, human-centric, and
GPS-constrained environments are desperately needed to address these challenges.

2 LITERATURE REVIEW
2.1 Conventional Approaches and Their Limitations

Conventional robot navigation systems are based on well-known deterministic frameworks like
Simultaneous Localization and Mapping (SLAM) for creating environmental maps and localizing
within them, Rapidly Exploring Random Trees (RRT) for path planning, Dijkstra’s algorithm, and
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A*. In structured indoor environments, where presumptions like static obstacles, dependable sensor
input, and adequate computational resources are usually true, these techniques have shown promise
(Li et al., 2022). Because they combine inputs from sensors like LiDAR, IMUs, and RGB-D
cameras to achieve reliable pose estimation and environmental modelling, SLAM variants like
ORB-SLAM and Cartographer SLAM have grown in popularity (Xu et al., 2022).

Regardless of their achievements, these methods have significant drawbacks that limit their use in
dynamic, unstructured, or real-world settings. Localization drift is a major problem, particularly in
environments with repetitive or poor features. For example, key points and visual elements are
frequently used in visual SLAM systems to carry out loop closure and preserve map consistency.
Due to the absence of clear landmarks, these systems gradually accumulate pose error in open
agricultural fields or repetitive indoor corridors, which lowers navigation accuracy (Guillén et al.,
2023).

Sensor-specific limitations also apply to conventional navigation systems. LIDAR sensors are
excellent at detecting depth, but they can be affected by weather conditions like rain, dust, and fog,
which can lead to poor point cloud quality and erroneous obstacle detection (Bechar et al., 2021).
The performance of visual odometry is also adversely affected by cameras' poor performance in
high glare or low light. IMUs are helpful for high-frequency motion updates, but they accumulate
drift if external corrections are not applied. According to Xu et al. (2022), these sensor-specific
limitations underscore the necessity of sensor fusion to counteract individual shortcomings, even
though poorly synchronized data can lead to compounding errors rather than improvements.

The static environment assumption that underlies a lot of conventional planners is another
significant drawback. Algorithms such as A* and Dijkstra are not naturally suited for situations
involving dynamic agents, like moving cars or pedestrians. When faced with unexpected changes,
this frequently leads to robots displaying abrupt or dangerous trajectories, especially in densely
populated areas. Additionally, conventional motion planners are not predictive as they only respond
when obstacles are already within sensor range.

Moreover, these systems typically lack contextual awareness and semantic comprehension.
Conventional navigation ignores context, such as whether an object is a moving vehicle, a person,
or a stationary chair, and treats all obstacles as being the same. According to Singhamaneni et al.
(2023), this makes it challenging for robots to behave in socially acceptable ways, such as yielding
to pedestrians or keeping a respectful distance. Such context blind behavior can cause discomfort
or safety hazards for people in settings like hospitals, airports, or city streets.

Additionally, a bottleneck is caused by computational limitations, particularly on embedded
systems. Even though deep learning techniques require more computing power than conventional
methods, real-time SLAM execution in dynamic environments with path planning and control still
necessitates careful system optimization. Li et al. (2022) have observed that the incorporation of
multiple sensor streams, particularly in multimodal systems, puts stress on embedded processing
units, resulting in increased system latency and decreased responsiveness.

Overall, conventional robot navigation techniques are reliable in controlled environments but
cannot handle dynamic, cluttered, and socially complex environments. Because of their
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deterministic nature, static world assumptions, and limited semantic understanding, navigation
systems must evolve to become more intelligent, adaptive, and context-aware. These drawbacks
paved the way for advancements in sensor fusion, learning based navigation, and socially conscious
behavior, which are covered in the sections that follow.

2.2 Learning Based Navigation

Learning based navigation, especially techniques based on deep reinforcement learning (DRL), has
greatly improved autonomous robots' performance in complex and dynamic environments in recent
years. Robots can make context-aware decisions straight from raw sensor data thanks to learning
based approaches that can integrate perception, mapping, and planning into a single architecture,
in contrast to conventional navigation pipelines that divide these processes into modular stages
(Zhu et al., 2025).

LiDAR scans, RGB images, depth maps, and other sensory inputs are directly mapped to navigation
commands by end-to-end DRL frameworks. Without the use of explicit mapping or localization
modules, these techniques can learn effective navigation strategies through reward-driven training.
Using only depth images as input, Zhu et al. (2025) showed how DRL agents perform better than
classical planners in cluttered indoor environments.

Nevertheless, hybrid architectures have become more reliable substitutes because of DRL's sample
inefficiency and generalization problems. Conventional global planners create waypoints or coarse
paths in these systems, while DRL policies deal with social compliance or avoiding local obstacles.
According to Kahn et al. (2018), this combination enhances convergence rates and reduces issues
like becoming trapped in dead ends or local minima.

High uncertainty environments, like pedestrian-heavy zones or warehouses with moving forklifts,
are ideal for modern DRL algorithms. Le et al. (2024) emphasized DRL-based navigation
techniques that model and forecast human motion by utilizing attention and Long Short-Term
Memory (LSTM) networks. By using these techniques, robots can program their paths to avoid
collisions and adhere to social norms that humans have established, like respecting personal space.
For instance, Guillén et al. (2023) created a socially conscious DRL policy that is trained with a
reward function that penalizes human discomfort. When compared to reactive methods, their results
demonstrated a significant improvement in safety and navigation fluency in crowded environments.

Developments in DRL architectures, including Proximal Policy Optimization (PPO), Dueling
DQNs, and Soft Actor Critic (SAC), have improved their suitability for robotics-related continuous
control scenarios. To help agents develop more complex internal representations and enhance
generalization, researchers have also used auxiliary learning tasks in partially observable
environments (Zhu et al., 2025).

Differentiable neural computers and GRU-based modules are two examples of memory-augmented
networks that improve spatial reasoning and lessen the requirement for total environmental
observability (Montero et al., 2025). By using these methods, robots can "remember" spatial layouts
over time, which makes navigation more strategic.
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Although simulations show promising results, real-world implementation of DRL-based navigation
is still difficult because of interpretability problems, safety concerns, and simulation-to-real gaps.
Although domain randomization and imitation learning techniques can aid in bridging the gap
between simulation and reality, real-time performance under hardware constraints and sensor noise
remains problematic, according to Soori et al. (2023).

Furthermore, DRL models are frequently viewed as "black boxes," which raises questions about
accountability in applications that depend on safety, like autonomous driving or healthcare.
Consequently, studies are now concentrating on improving the interpretability of DRL decisions
using strategies such as explainable reward functions and saliency maps (Singamaneni et al., 2024).

2.3 Sensor Fusion and Multimodal Navigation

Multimodal navigation and sensor fusion are essential elements of contemporary robot navigation
systems that allow robots to function dependably in unpredictable, dynamic, and unstructured
environments. Recent developments make use of the combination of several sensor modalities,
such as RGB-D cameras, LIDAR, IMUs, GPS, ultrasonic sensors, and radar, to improve perception
robustness and environmental understanding, whereas conventional systems frequently depended
on a single dominant sensor, such as LiDAR or camera, for localization and obstacle avoidance (Li
etal., 2022).

The fundamental idea behind multimodal navigation is that various sensors have complementary
advantages. IMUs deliver inertial data with high frequency but suffer from drift over time, cameras
provide rich semantic content but struggle with depth and lighting variations, and LiDAR provides
precise depth measurements but performs poorly in bad weather. Robots can increase their
navigation accuracy and make up for the limitations of individual sensors by combining these
inputs (Bechar et al., 2021).

The two main types of sensor fusion architectures are low-level (raw data) fusion and high-level
(feature or decision) fusion. Low-level fusion combines sensor raw data streams before performing
additional processing, like matching visual features to point clouds. In contrast, high-level fusion
incorporates separate sensor-specific outputs. For example, it combines visual loop closure
detection with a LIDAR-based SLAM map to improve localization (Khan et al., 2024). In order to
account for measurement noise and uncertainty, advanced techniques frequently fuse sensor data
probabilistically using Bayesian filters, Kalman filtering, and particle filters.

A popular method for sensor fusion in robotics, visual inertial odometry (VI0) is particularly useful
in indoor or GPS-denied environments. VIO systems use IMU data and camera images to estimate
pose and motion. By integrating IMU data, ORB-SLAMS3, for instance, improves the well-known
visual SLAM framework's robustness and accuracy in cluttered or dimly lit environments (Campos
etal., 2021).

Deep learning for sensor fusion has also been explored recently, employing neural networks to
automatically learn the best fusion techniques from data. In order to achieve greater localization
accuracy in congested urban environments, Li et al. (2022) proposed a multi-sensor deep fusion
framework in which convolutional neural networks (CNNs) and recurrent networks learn to process
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and align features from LiDAR and camera streams. These methods work especially well in
unstructured settings where manual fusion pipelines and conventional sensor calibration may not
work.

Through the integration of semantic data from maps, environmental affordances, and user
instructions, multimodal navigation expands on the idea. According to Wang et al. (2024), tasks
involving human-robot interaction might necessitate the interpretation of natural language
commands and their combination with spatial sensor data for semantic navigation. The ability to
interpret sensor input in the context of human intentions and environmental labels is crucial for
service robots placed in homes, hospitals, or shopping centers.

Sensor fusion has drawbacks despite its advantages, including computational overhead, sensor
calibration, and synchronization. Performance can be negatively impacted by misaligned data
brought on by mounting errors or time drift. Additionally, combining several high-rate sensor
streams in real time necessitates effective processing and frequently specialized hardware, such as
edge TPUs or GPUs.

2.4 Socially Aware Navigation

An emerging field called socially aware navigation (SAN) aims to allow robots to navigate in
shared human environments while maintaining human comfort, safety, and social norms. By
integrating ideas like proxemics, human intention prediction, and emotional comfort, SAN
considers how robot movement may impact nearby humans, in contrast to conventional navigation
systems that give priority to the shortest or most efficient paths (Méller et al., 2021).

As more and more robots are used in both private and public settings, including homes, malls,
hospitals, and airports, they must behave in a way that people find normal and unobtrusive. Even
though they may be technically sound, conventional navigation algorithms frequently produce
ungainly or dangerous paths that infringe on personal space, trigger startle reactions, or obstruct
pedestrian traffic (Singamaneni et al., 2024). Research on modeling socially compliant behaviors
in robot navigation has increased because of this.

The Social Force Model (SFM), one of the most well-known models in SAN, views people and
robots as particles that are affected by repulsive or attractive forces to maintain suitable distances.
Despite being widely used, SFM-based approaches frequently depend on manually created rules
and perform poorly in environments that are complex or extremely dynamic (Vemula et al., 2017).
As a result, learning based methodologies, specifically deep reinforcement learning (DRL) and
graph neural networks (GNNS), are the focus of current research.

In their 2025 study, Montero et al. proposed Socially Aware Collision Avoidance with Deep
Reinforcement Learning (SA-CADRL), in which the robot learns to anticipate the future locations
of humans in the vicinity and adjusts its navigational policies accordingly. Reducing collision risk
and maintaining human comfort are rewarded by the DRL framework. Comparably, Vemula et al.
(2017) presented GAT-Nav, a graph attention network that uses attention-based message passing
to learn socially acceptable trajectories and model inter-agent dependencies.
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The explicit incorporation of proxemics and social norms into navigation cost functions is another
trend in SAN. Daza et al. (2021), for instance, created a navigation system that uses human motion
dynamics and cultural space preferences to assign dynamic social cost maps. The robot can keep
culturally appropriate distances from people and groups thanks to its system.

Emotion-aware navigation is another area of recent research in which robots use body language or
facial expressions to determine the emotional states of people in their immediate vicinity. This
enables adaptive behavior like reducing speed when someone seems nervous or avoiding a stressed
person more closely (Narayanan et al., 2020).

Even with advancements, difficulties still exist. Human behavior is difficult to model, particularly
in socially complex or unfamiliar environments. Wider adoption is further impeded by cultural
differences, real-time performance limitations, and the absence of standardized evaluation metrics.
Coordination issues are also introduced when SAN is integrated into multi-agent systems, like
drone or delivery robot fleets.

25 Navigation in GPS Denied and Degraded Environments

One of the most important problems in autonomous robotics is navigation in environments where
GPS is unavailable or degraded. GPS signals are intermittently or totally lost in a variety of real-
world deployment scenarios, such as underground tunnels, dense urban canyons, forests,
underwater environments, and disaster areas. To guarantee safe and dependable robot operations
in these environments, alternative localization and navigation techniques must be used
(Ohradzansky and Humbert, 2022).

GPS-free navigation used to depend on Simultaneous Localization and Mapping (SLAM)
techniques. With the help of onboard sensors like cameras, LiDARs, or IMUs, SLAM enables a
robot to map an unfamiliar environment while also determining its position within it. Visual SLAM
(V-SLAM), LIiDAR SLAM, and tightly coupled visual inertial SLAM are some of the SLAM
variations that have developed over time. Each is appropriate for a particular set of environmental
circumstances and sensor accessibility (Campos et al., 2021).

ORB-SLAMS3, a popular and robust framework, combines inertial measurements with monocular,
stereo, and RGB-D camera input to enhance tracking robustness in feature-poor or fast-changing
lighting conditions (Campos et al., 2021). Researchers are investigating LiDAR-based SLAM
systems like LOAM (Lidar Odometry and Mapping), which rely on point cloud registration and
are less impacted by lighting, for harsh environments like mines or collapsed buildings where visual
data may be unreliable.

Multi-modal SLAM, which combines information from several sensors like LiDAR, IMU, radar,
and cameras to improve localization accuracy and fault tolerance, has also been investigated
recently. Radar has drawn interest due to its resilience to dust, fog, and darkness, which makes it
appropriate for underground navigation and autonomous driving (Barnes et al., 2020).

Localization errors resulting from multipath effects and signal occlusion are frequent in GPS-
degraded outdoor environments, such as urban canyons. In order to rectify localization drift,
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researchers incorporate visual place recognition methods like NetVLAD or SeqSLAM, which
compare the current visual scenes to a database of geotagged images (Taira et al., 2018).

Furthermore, learning based navigation has started to support conventional methods in areas where
GPS is not available. Especially in repetitive or structured environments like indoor corridors or
industrial facilities, deep reinforcement learning and imitation learning can teach agents to navigate
using raw sensor input without explicit maps (Tai et al., 2017). Recurrent networks and memory-
based architectures are being used in conjunction with these strategies to help agents recover from
localization loss and recall previous observations.

Swarm robotics also offers promising solutions by distributing sensing and localization tasks across
multiple agents. In subterranean missions, for instance, one robot may act as a fixed beacon or
communication node while others explore and relay positional information (Biggie et al., 2023).

Even with these developments, several issues still exist, such as the high computational
requirements of sensor fusion, the cumulative error in dead reckoning techniques, and the
challenges of relocalization following occlusion. Therefore, to improve performance in GPS-
compromised environments, current research focuses on resilient localization, map sharing
protocols, and adaptive uncertainty modelling.

2.6 Application Specific Innovations

A major trend toward customized innovations that meet the requirements of applications is taking
place as robot navigation technologies continue to advance. Robot navigation systems are being
developed more and more to satisfy domain-specific operational challenges, safety standards, and
environmental limitations in a variety of industries, including healthcare, industrial automation,
and urban delivery. By concentrating on specific sensor configurations, algorithms, and contextual
decision-making techniques, these application-specific innovations diverge from generic
navigation models.

For instance, in agricultural robotics, navigation systems must deal with crop occlusion, uneven
terrain, and fluctuating lighting. Conventional GPS or LiDAR-based navigation frequently
performs poorly in these dynamic outdoor settings. Using deep learning and semantic
segmentation, researchers have created vision-based algorithms for crop following and row
detection to help robots navigate fields with little infrastructure (Bai et al., 2023). LiDAR, stereo
cameras, and RTK-GPS sensor fusion are now integrated into autonomous tractors and harvesters
to increase navigation reliability in expansive, open farm environments.

Navigation advancements in healthcare and assistive robotics prioritize user comfort, safety, and
social compliance. In hospitals and assisted living facilities, service robots must maneuver through
congested hallways and patient rooms while collaborating with people naturally. Thus, voice
command integration and semantic mapping capabilities have been added to socially conscious
path planning and obstacle avoidance systems (Daza et al., 2021). Additionally, based on patient
proximity and activity, context-aware behavior models enable robots to prioritize routes that respect
personal spaces or steer clear of medical equipment.
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Navigation systems in warehouse and industrial automation have developed to facilitate fast,
accurate operations in controlled indoor spaces. Among the innovations are the use of magnetic
tape guidance, fiducial markers, and ultra-wideband (UWB) localization for accuracy down to the
millimeter (Al-Okby et al., 2024). Automated guided vehicles (AGVs) and autonomous mobile
robots (AMRs) are examples of mobile robots that use adaptive scheduling algorithms. These
algorithms combine fleet coordination, dynamic obstacle management, and route planning in real
time.

Road crossing, sidewalk traversal, curb detection, and pedestrian interaction are some of the
difficulties that come with urban navigation and delivery robotics. While making on-time
deliveries, these robots must function under stringent safety and regulatory guidelines. Among the
solutions are traffic signal recognition, HD map-based navigation, and integration with V2X
(vehicle to everything) communication infrastructure (Zhu et al., 2021). Delivery robots such as
Starship and Amazon Scout use active suspension systems, multiple onboard cameras, and low-
profile designs to efficiently negotiate slopes and curbs.

Navigation systems for exploration and rescue operations are frequently made for unstructured,
GPS-denied environments, like mines or collapsed buildings. Swarm coordination, SLAM with
LiDAR and thermal imaging, and tracked or legged locomotion are the main areas of innovation
here. For example, to ensure continuous navigation coverage, DARPA Sub teams have deployed
subterranean robots that use ground rovers and aerial drones to share maps and sensor data (Biggie
etal., 2023).

Finally, time delays, harsh terrains, and communication outages are some of the navigational
challenges faced by space and planetary robotics. To navigate the Martian surface with little
assistance from humans, NASA's Perseverance rover, for instance, uses autonomous hazard
detection, visual odometry, and terrain classification (Maki et al., 2021).

3. METHODOLOGY

This review uses a methodical approach to investigate the latest developments in robot navigation
technologies, with an emphasis on their developing uses in a range of fields. To provide a thorough
and trustworthy synthesis of related research from 2017 to 2025, the methodology combines a
systematic literature search, precise inclusion and exclusion criteria, thematic categorization, and
comparative evaluation.

3.1 Literature Selection, Inclusion and Exclusion Criteria

A focused literature search was carried out using four important academic databases, namely
Google Scholar, IEEE Xplore, SpringerLink, and ScienceDirect. Studies from 2017 to 2025 were
taken into consideration to guarantee the relevance. The search strategy used Boolean combinations
of terms like "socially aware robot navigation,” "autonomous mobile robot," "SLAM," "sensor
fusion,” "deep learning navigation,” and "GPS denied environments."
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More than 500 studies were found using the original query. The following inclusion criteria were
used to filter these in stages:

1. Relevance to the topic: The focus of the study must be robot navigation techniques,
tools, or applications.

2. Technical contribution and innovation: Research presenting new navigation
techniques or notable improvements was prioritized.

3. Empirical validation: Findings from included studies must be supported by high-
fidelity simulation environments like CARLA, Gazebo, or AlIRism, or by real-
world testing.

4. Application specificity: Navigation systems must be used in situations that are
specific to their context, such as exploration, logistics, healthcare, or agriculture.

5. Peer-reviewed quality: Only peer-reviewed conference papers and journal articles
were chosen.

The exclusion criteria excluded papers that did not present novel insights, theoretical frameworks
only, duplicate content, and publications written in languages other than English, and 28 important
publications were kept for a thorough examination after the selection criteria were applied.

3.2 Thematic Categorization and Evaluation Framework

The chosen studies were categorized thematically to facilitate structured analysis based on the
following:

Methods of navigation (SLAM, deep learning based, hybrid)

Sensor modality (GPS, LiDAR, radar, stereo cameras, and IMUs)

Application domain (healthcare, urban mobility, agriculture)

Environmental context (structured, unstructured, indoor, outdoor, GPS denied)
Level of intelligence (context sensitive, socially aware)

Performance indicators (energy efficiency, success rate, and localization accuracy)

o kr~wbdPE

These characteristics made it possible to compare how new approaches fit the needs and
limitations of the real world.

3.3 Summary Table of Navigation Applications

Selected systems are compiled in Table 1 according to their context awareness, navigation strategy,
sensor suite, and application domain.

Table 1: Summary of Navigation Application

Domain Sensor Modality | Navigation Context References
Approach Awareness
Agriculture RGB-D, Vision-based Medium (terrain | Bai et al. (2023);
LiDAR, GPS, SLAM aware) Wang et al.
IMU (2024)
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Healthcare Depth cam, High Daza et al.
LiDAR, Socially Aware (2021);
ultrasonic Path Planning Narayanan et al.

(2020)

Urban Delivery Radar, stereo DRL with HD Medium Zhu et al.

cam, GPS Map Integration (2021); Barnes
et al. (2020)

Warehouse UWSB, fiducial Heuristic Aided | Low Al-Okby et al.

markers, RFID | SLAM (2024); Wang et
al. (2024)

Search & Rescue | Thermal, radar, | Multi-agent Medium Biggie et al.

LiDAR, IMU SLAM (2023);
Ohradzansky
and Humbert
(2022)

Planetary/Space | Visual Terrain-aware Low Maki et al.
Odometry, Path Planning (2021)
inertial sensors

4. RESULTS AND DISCUSSION

The performance, applicability, and limitations of various robot navigation technologies are
highlighted in this section, which summarizes the main conclusions from the reviewed literature.
Recent developments in sensor fusion, learning based navigation, socially conscious systems, and
the increasing robustness of navigation technologies in GPS-denied environments are highlighted.
A more thorough comprehension of the advantages and disadvantages of various domains is made
possible by comparative analysis.

4.1 Transition from Conventional to Learning Based Approaches

A significant development in robot navigation is the gradual evolution from conventional
approaches like Dijkstra's algorithm and SLAM based on the Extended Kalman Filter (EKF) to
data-driven strategies like Deep Reinforcement Learning (DRL) and imitation learning. Because of
their simplicity and dependability in structured environments, conventional approaches are still
frequently employed (Al-Okby et al., 2024). However, a significant drawback of these approaches
is their inability to generalize in dynamic or unstructured environments.

According to recent research, DRL-enhanced navigation can perform better than Conventional
methods, especially in dynamic and partially observable environments (Zhu et al., 2021). In urban
navigation scenarios, for instance, a comparison between DRL and rule-based planners revealed a
30% decrease in collisions and a 12% increase in success rate (Barnes et al., 2020). However, the
deployment of these enhancements on platforms with limited resources is limited due to their high
computational costs and longer training times.
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4.2 Effectiveness of Multimodal Inputs and Sensor Fusion

Robust navigation has been made possible by sensor fusion, particularly in situations with shifting
lighting, occlusion, or erratic GPS signals. Combining LiDAR, IMU, and vision sensors enhances
both localization accuracy and path following stability, as shown by studies like Campos et al.
(2021) and Biggie et al. (2022).

On the other hand, in order to attain sub-10 cm localization accuracy in agricultural navigation, Bai
et al. (2023) combined RGB-D cameras with LIDAR and GNSS. Likewise, Al-Okby et al. (2024)
showed that over a 500 m?2 indoor space, UWB and IMU fusion maintained less than 5 cm drift.
These findings highlight how multimodal sensor integration improves performance in unstructured
or GPS-deficient environments and increases reliability.

4.3 Social and Contextual Awareness in Human-Centered Environments

In healthcare settings, public areas, and service robots, socially conscious navigation is essential.
Daza et al. (2021) demonstrated that in hospital hallways, navigation systems that took into
consideration social factors such as gaze direction, personal space, and group dynamics decreased
path interruptions and raised user satisfaction.

For instance, Narayanan et al. (2020) introduced emotion-aware navigation, in which the navigation
behavior was dynamically modified in response to human facial expressions. Comparing their
system to context-unaware systems, they saw a 25% decrease in path replanning and an increase in
user engagement. These results demonstrate that incorporating human-centric design enhances
human-robot interaction performance and trust.

4.4 Navigation in GPS Denied and Degraded Settings

Robust navigation is still a major challenge in situations where GPS is unavailable or unreliable.
Emerging methods like visual inertial odometry, radar-based SLAM, and bio-inspired navigation
are becoming more popular. Using visual SLAM and radar, multi-robot systems in the DARPA
Subterranean Challenge were able to achieve sub-meter accuracy in underground tunnels (Biggie
etal., 2023).

According to Maki et al. (2021), NASA's Perseverance rover achieved resilience without satellite
guidance by navigating Mars terrain using visual odometry and hazard detection algorithms. These
studies show that strong perception and environmental adaptability are critical for successful GPS-
free navigation.

4.5 Application Specific Insights

Several combinations of sensor modalities and navigation techniques are preferred by various
application domains. The use of fiducial markers and heuristic planning allows for accurate and
economical localization in indoor warehouse environments (Wang et al., 2024). However,
planetary navigation requires robust systems that can make decisions on their own even in the face
of severe limitations (Maki et al., 2021).
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According to Narayanan et al. (2020), emotion-aware and socially responsive path planning is
crucial for healthcare robots because it lowers the risk of collisions and enhances patient interaction.
The design of navigation systems is guided by the requirements of each domain, which may include
accuracy, interpretability, computational efficiency, or user comfort. The summary of the findings
for the performance of navigation is displayed in Table 2.

Table 2: Summary of Performance Metrics for Navigation System

Domain

Sensor Reference

Fusion

Success
Rate

Localization
Error

Learning
Based

Socially
Aware

Agriculture

Bai et al
(2023); Wang
et al. (2024)

0.08-0.12m | 90-95% | Yes Partially | Medium

Urban Delivery

Zhu et al
(2021);
Barnes et al.
(2020)

0.15-0.20m | 85-92% | Yes Yes Medium

Healthcare

Daza et al.
(2021);
Narayanan et
al. (2020)

<0.10m 92-97% | Yes Yes High

Warehouse

<0.05m 98-99% | Limited | No Low Al-Okby et al.

(2024); Wang
et al. (2024)

Search &
Rescue

0.25-0.40m | 80-88% | Yes Yes Medium | Ohradzansky

and Humbert
(2022)

Space/Planetary

Maki
(2021)

Variable ~85% Yes Partially | Low et al.

4.6

Emerging Trends and Implications

Several significant trends are evident from the reviewed literature, are listed below:

1.

Real-time adaptation is increasingly being achieved through hybrid navigation
architectures that combine learned behaviors and rule-based behavior (Campos et
al., 2021).

Human-aware systems and social intelligence are becoming crucial in
collaborative fields (Narayanan et al., 2020).

The use of sensor redundancy to increase resilience in deteriorated environments
is growing (Biggie et al., 2023).

Domain-specific design offers better performance than universal models by tuning
navigation strategies to contextual constraints.

These advancements show a trend toward navigation systems that are more robust, intelligent, and
user-aware and that can function well in challenging real-world situations.
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5. CONCLUSION

Over the past five years, the field of robot navigation has undergone a dramatic paradigm shift,
largely because of the convergence of sophisticated sensor technologies, artificial intelligence, and
a growing variety of deployment environments. The transition from conventional, rule-based
approaches to sophisticated learning based and context-aware systems was highlighted in this
review, which critically examined new applications of robot navigation technologies.

Conventional methods like Extended Kalman Filter (EKF) driven SLAM and graph-based planners
are still widely used in controlled environments because of their interpretability and low
computational overhead, but in dynamic, unstructured, and GPS-denied environments, their
shortcomings become apparent (Al-Okby et al., 2024). As a result, deep learning and reinforcement
learning have become more widely used for adaptive decision making, obstacle avoidance, and
path planning. According to research by Zhu et al. (2021) and Barnes et al. (2020), learning based
models enhance navigation effectiveness and lower collision rates in addition to adapting to
previously unexplored environments. This is particularly true when paired with high-definition
maps or semantic understanding.

A key component of reliable and resilient navigation is sensor fusion. Localization accuracy and
environmental awareness are greatly improved by integrating LiDAR, cameras, inertial sensors,
and UWB or GNSS modules. Even in complex terrains or with impaired sensory inputs, sensor
fusion improves operational stability and fault tolerance, as shown by Campos et al. (2021) and Bai
et al. (2023). In search and rescue operations, agricultural robotics, and underground exploration,
this multimodal approach is especially crucial.

Particularly in service-oriented domains, socially conscious navigation has become increasingly
popular. The need for navigation systems that adhere to social norms, prevent discomfort, and
convey intent is increasing as robots and humans share more and more spaces. Emotion-aware and
proxemics-based planning techniques that greatly improve user trust and collaboration in home and
healthcare settings were demonstrated by Daza et al. (2021) and Narayanan et al. (2020).

One of the most urgent issues has been navigating in GPS-denied and degraded settings. Robots
can now operate dependably without satellite guidance thanks to innovations like visual inertial
odometry, radar-based SLAM, and bio-inspired mapping techniques (Biggie et al., 2023; Maki et
al., 2021). These features are essential for military operations, space exploration, and driverless
cars.

The significance of application-specific innovations is further supported by the reviewed evidence.
For instance, planetary rovers require highly autonomous and energy-efficient systems (Maki et
al., 2021), whereas marker-based and heuristic systems in warehouse logistics offer quick and
economical solutions (Wang et al., 2024). Therefore, domain-specific requirements must inform
the design of navigation technologies, highlighting a customized rather than a general approach.

The development of explainable navigation strategies to increase human trust, the incorporation of
lightweight edge Al to facilitate real-time onboard learning, and standardized frameworks for
simulation and benchmarking are some of the major trends for the future. Future studies should
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also investigate ethical and legal issues, especially as robots are used more and more in both private
and public settings.

In summary, robot navigation technologies are developing quickly in the direction of increased
intelligence, autonomy, and human awareness. This development is changing how robots engage
with their surroundings and human counterparts in addition to opening new applications. It will
take ongoing multidisciplinary research and innovation to turn these cutting-edge technologies into
reliable, moral, and scalable practical solutions.
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